Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
The planet is thought to have a minimum mass of 5.35 ± 0.75 ]es,<ref name=arxiv1408_5645/> and at its discovery was the sixth-nearest known ].
The planet is thought to have a minimum mass of 5.35 ± 0.75 ]es,<ref name=arxiv1408_5645/> and at its discovery was the sixth-nearest known ].
Using the ] spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (], GJ 15 Ac) with a mass of 51.8 ]es and a long orbital period of about 7,026 days, could be orbiting the parent star.<ref name=Trifonov>{{cite journal|doi=10.1051/0004-6361/201731442|title=The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems|journal=Astronomy & Astrophysics|year=2017|last1=Trifonov|first1=T|last2=Kürster|first2=M|last3=Zechmeister|first3=M|last4=Tal-Or|first4=L|last5=Caballero|first5=J|last6=Quirrenbach|first6=A|last7=Ribas|first7=I|last8=Reiners|first8=A|arxiv=1710.01595|bibcode=2018A&A...609A.117T}}</ref>
Using the ] spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (], GJ 15 Ac) with a mass of 51.8 ]es and a long orbital period of about 7,026 days, could be orbiting the parent star.<ref name=Trifonov>{{cite journal|doi=10.1051/0004-6361/201731442|title=The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems|journal=Astronomy & Astrophysics|volume=609|pages=A117|year=2017|last1=Trifonov|first1=T|last2=Kürster|first2=M|last3=Zechmeister|first3=M|last4=Tal-Or|first4=L|last5=Caballero|first5=J|last6=Quirrenbach|first6=A|last7=Ribas|first7=I|last8=Reiners|first8=A|arxiv=1710.01595|bibcode=2018A&A...609A.117T}}</ref>
Groombridge 34 is a binary star system in the northern constellation of Andromeda. It was listed as entry number 34 in A Catalogue of Circumpolar Stars, published posthumously in 1838 by British astronomer Stephen Groombridge. Based upon parallax measurements taken by the Hipparcos spacecraft, the system is located about 11.7 light-years from the Sun. This positions the pair among the nearest stars to the Solar System.
Both components are small, dim red dwarf stars that are too faint to be seen with the naked eye. They orbit around their common barycenter in a nearly circular orbit with a separation of about 147 AU and a period of around 2,600 years. Both stars exhibit random variation in luminosity due to flares and they have been given variable star designations: the brighter member Groombridge 34 A is designated GX And, while the smaller component is designated GQ And.
The star system has a relatively high proper motion of 2.9 arc seconds per year, and is moving away from the Solar System at a velocity of 11.6 km/s. It achieved perihelion some 15,000 years ago when it came within 11 ly (3.5 pc) of the Sun.
Planetary system
In August 2014, a planet orbiting around Groombridge 34 A was reported. The planet's existence was deduced from analysis of the radial velocities of the parent Star by the Eta-Earth Survey using HIRES at Keck Observatory.
The planet is thought to have a minimum mass of 5.35 ± 0.75 Earth masses, and at its discovery was the sixth-nearest known exoplanet.
Using the CARMENES spectrograph combined with the measurements of the HARPS and HIRES spectrographs, researchers failed to detect the purported Groombridge 34 Ab. However, they did propose another that another planet (Groombridge 34 Ac, GJ 15 Ac) with a mass of 51.8 Earth masses and a long orbital period of about 7,026 days, could be orbiting the parent star.
^ From , where is the luminosity, is the radius, is the effective surface temperature and is the Stefan–Boltzmann constant
^ Using the absolute visual magnitude of Gliese 15 A, , and Gliese 15 B, , with the absolute visual magnitude of the Sun, , the two visual luminosities of the stars can be calculated by
^ Lippincott, S. L. (March 1972), "Parallax and orbital motion of the two nearby long period visual binaries Groombridge 34 and ADS 9090.", Astronomical Journal, 77: 165–168, Bibcode:1972AJ.....77..165L, doi:10.1086/111261.
Petit, M. (October 1990), "Catalogue des étoiles variables ou suspectes dans le voisinage du Soleil", Astronomy and Astrophysics Supplement (in French), 85 (2): 971, Bibcode:1990A&AS...85..971P.
^ Trifonov, T; Kürster, M; Zechmeister, M; Tal-Or, L; Caballero, J; Quirrenbach, A; Ribas, I; Reiners, A (2017). "The CARMENES search for exoplanets around M dwarfs. First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems". Astronomy & Astrophysics. 609: A117. arXiv:1710.01595. Bibcode:2018A&A...609A.117T. doi:10.1051/0004-6361/201731442.