The following pages link to Spectral abscissa
External toolsShowing 50 items.
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)- Banach algebra (links | edit)
- C*-algebra (links | edit)
- Spectral theorem (links | edit)
- Singular value decomposition (links | edit)
- Normal operator (links | edit)
- Spectrum (functional analysis) (links | edit)
- Spectral method (links | edit)
- *-algebra (links | edit)
- Von Neumann algebra (links | edit)
- Self-adjoint (links | edit)
- Gelfand–Naimark theorem (links | edit)
- Gelfand representation (links | edit)
- Spectral radius (links | edit)
- Rigged Hilbert space (links | edit)
- Operator algebra (links | edit)
- Spectral theory (links | edit)
- Compact operator (links | edit)
- Noncommutative topology (links | edit)
- Min-max theorem (links | edit)
- Fuglede's theorem (links | edit)
- Disk algebra (links | edit)
- Continuous functional calculus (links | edit)
- Borel functional calculus (links | edit)
- Spectrum of a C*-algebra (links | edit)
- Approximate identity (links | edit)
- Functional calculus (links | edit)
- Decomposition of spectrum (functional analysis) (links | edit)
- Projection-valued measure (links | edit)
- Direct integral (links | edit)
- Essential spectrum (links | edit)
- Polar decomposition (links | edit)
- Unbounded operator (links | edit)
- Tomita–Takesaki theory (links | edit)
- Fredholm alternative (links | edit)
- POVM (links | edit)
- Fredholm theory (links | edit)
- Uniform algebra (links | edit)
- Spectral theory of compact operators (links | edit)
- Banach function algebra (links | edit)
- Spectral asymmetry (links | edit)
- Spectral gap (links | edit)
- Gelfand–Mazur theorem (links | edit)
- Schröder–Bernstein theorems for operator algebras (links | edit)
- Amenable Banach algebra (links | edit)
- Hilbert–Schmidt integral operator (links | edit)
- Von Neumann's theorem (links | edit)
- Shilov boundary (links | edit)
- Spectral theory of ordinary differential equations (links | edit)
- Unitary element (links | edit)
- Spectral geometry (links | edit)