Misplaced Pages

Chloroprene

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from 2-chlorobutadiene)
Chloroprene
Chloroprene
Chloroprene
Chloroprene
Chloroprene
Names
Preferred IUPAC name 2-Chlorobuta-1,3-diene
Other names Chloroprene, 2-chloro-1,3-butadiene, Chlorobutadiene, β-Chloroprene
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 741875
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.004.381 Edit this at Wikidata
EC Number
  • 204-818-0
Gmelin Reference 277888
KEGG
PubChem CID
RTECS number
  • EL9625000
UNII
UN number 1991
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C4H5Cl/c1-3-4(2)5/h3H,1-2H2Key: YACLQRRMGMJLJV-UHFFFAOYSA-N
  • InChI=1/C4H5Cl/c1-3-4(2)5/h3H,1-2H2Key: YACLQRRMGMJLJV-UHFFFAOYAQ
SMILES
  • C=C(Cl)C=C
Properties
Chemical formula C4H5Cl
Molar mass 88.5365 g/mol
Appearance Colorless liquid
Odor Pungent, ether-like
Density 0.9598 g/cm
Melting point −130 °C (−202 °F; 143 K)
Boiling point 59.4 °C (138.9 °F; 332.5 K)
Solubility in water 0.026 g/100 mL
Solubility Soluble in alcohol, diethyl ether
Miscible in ethyl ether, acetone, benzene
Vapor pressure 188 mmHg (20 °C)
Refractive index (nD) 1.4583
Hazards
Occupational safety and health (OHS/OSH):
Main hazards Highly flammable, irritant, toxic
GHS labelling:
Pictograms GHS02: FlammableGHS07: Exclamation markGHS08: Health hazard
Signal word Danger
Hazard statements H225, H302, H315, H319, H332, H335, H350, H373
Precautionary statements P201, P202, P210, P233, P240, P241, P242, P243, P260, P261, P264, P270, P271, P280, P281, P301+P312, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P308+P313, P312, P314, P321, P330, P332+P313, P337+P313, P362, P370+P378, P403+P233, P403+P235, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2 3 0
Flash point −15.6 °C (3.9 °F; 257.5 K)
Explosive limits 1.9–11.3%
Lethal dose or concentration (LD, LC):
LD50 (median dose) 450 mg/kg (rat, oral)
LC50 (median concentration) 3207 ppm (rat, 4 hr)
LCLo (lowest published) 1052 ppm (rabbit, 8 hr)
350 ppm (cat, 8 hr)
NIOSH (US health exposure limits):
PEL (Permissible) TWA 25 ppm (90 mg/m)
REL (Recommended) Ca C 1 ppm (3.6 mg/m)
IDLH (Immediate danger) 300 ppm
Related compounds
Related Dienes Butadiene
Isoprene
Related compounds Vinyl chloride
2,3-Dichlorobutadiene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Chloroprene (IUPAC name 2-chlorobuta-1,3-diene) is a chemical compound with the molecular formula CH2=CCl−CH=CH2. Chloroprene is a colorless volatile liquid, almost exclusively used as a monomer for the production of the polymer polychloroprene, better known as neoprene, a type of synthetic rubber.

History

Although it may have been discovered earlier, chloroprene was largely developed by DuPont during the early 1930s, specifically with the formation of neoprene in mind. The chemists Elmer K. Bolton, Wallace Carothers, Arnold Collins and Ira Williams are generally accredited with its development and commercialisation although the work was based upon that of Julius Arthur Nieuwland, with whom they collaborated.

Production

Chloroprene is produced in three steps from 1,3-butadiene: (i) chlorination, (ii) isomerization of part of the product stream, and (iii) dehydrochlorination of 3,4-dichlorobut-1-ene.

Chlorine adds to 1,3-butadiene to afford a mixture of 3,4-dichlorobut-1-ene and 1,4-dichlorobut-2-ene. The 1,4-dichloro isomer is subsequently isomerized to 3,4 isomer, which in turn is treated with base to induce dehydrochlorination to 2-chlorobuta-1,3-diene. This dehydrohalogenation entails loss of a hydrogen atom in the 3 position and the chlorine atom in the 4 position thereby forming a double bond between carbons 3 and 4. In 1983, approximately 2,000,000 kg was produced in this manner. The chief impurity in chloroprene prepared in this way is 1-chlorobuta-1,3-diene, which is usually separated by distillation.

Acetylene process

Until the 1960s, chloroprene production was dominated by the "acetylene process," which was modeled after the original synthesis of vinylacetylene. In this process, acetylene is dimerized to give vinyl acetylene, which is then combined with hydrogen chloride to afford 4-chloro-1,2-butadiene (an allene derivative), which in the presence of copper(I) chloride, rearranges to the targeted 2-chlorobuta-1,3-diene:

This process is energy-intensive and has high investment costs. Furthermore, the intermediate vinyl acetylene is unstable. This "acetylene process" has been replaced by a process which adds Cl2 to 1,3-butadiene, giving 1,4-dichloro-2-butene. Isomerization of the latter gives 1,2-dichloro-3-butene, which undergoes dehydrochlorination::

CH2=CHCH=CH2 + Cl2 → ClCH2CH=CHCH2Cl
ClCH2CH=CHCH2Cl → ClCH2CHClCH=CH2
ClCH2CHClCH=CH2 → CH2=CClCH=CH2 + HCl

Occupational health and safety, and regulations

Chloroprene is in hazard class 3 (flammable liquid). Its UN number is 1991 and is in packing group 1.

Hazards

Chloroprene is toxic. It is reactive towards air, producing peroxides, which are also toxic. Handling of and exposure to chloroprene poses an occupational health risk to workers involved in the manufacture and production of neoprene.

GHS hazard pictograms that apply to chloroprene. From left: flammability; carcinogenicity, mutagenicity, reproductive toxicity, respiratory sensitization, target organ toxicity, or aspiration toxicity; irritant (skin and eye), skin sensitizer, respiratory tract irritant, hazardous to ozone layer, may have narcotic effects; aquatic toxicity; and acute toxicity (fatal or toxic).

As a way to visually communicate hazards associated with chloroprene exposure, the United Nations Globally Harmonized System of Classification and Labeling of Chemicals has designated the following hazards for exposure to chloroprene: flammable, toxic, dangerous to the environment, health hazard and irritant. Chloroprene poses fire hazard (flash point −4 °F (−20 °C)). OSHA identifies chloroprene as a category 2 flammable liquid and emphasizes that at least one portable fire extinguisher should be within 10 and no more than 25 feet away from the flammable liquid storage area. OSHA provides resources on addressing flammable liquids at industrial plants which is where the likely exposure to chloroprene exists (see external resources). As a vapor, chloroprene is heavier than air.

According to the National Fire Protection Association's rating system, chloroprene is designated with a category 2 health hazard (temporary incapacitation or residual injury), a category 3 fire hazard (ignition under the presence of moderate heat), and a category 1 reactivity (unstable at high temperatures and pressures).

Chronic exposure to chloroprene may have the following symptoms: liver function abnormalities, disorders of the cardiovascular system, and depression of the immune system.

The Environmental Protection Agency designated chloroprene as likely to be carcinogenic to humans based on evidence from studies that showed a statistically significant association between occupational chloroprene exposure and the risk of lung cancer. As early as 1975, NIOSH had identified the potential health hazards of chloroprene in their bulletin primarily citing two Russian cohort studies from those working with chloroprene in an occupational setting.

Hazard controls

Several epidemiological studies and toxicological reports provide evidence of chloroprene's capability to inflict occupational health and safety concerns. However, varying reviews of the degree to which chloroprene should be held responsible for health concerns highlight the criticality of sound scientific research. Only one fatality as a result of chloroprene intoxication has been recorded which was a result of cleaning a container used for chloroprene.

The primary occupational concern for chloroprene is limited to the facilities producing chloroprene and using chloroprene to produce the synthetic rubber, polychloroprene.

The high vaporization potential and flammability of chloroprene has significant implications for handling and storage operations in the occupational setting. Chloroprene should be stored in closed containers in a cool, well-ventilated area with the temperature no higher than 50 °F (10 °C). In addition, chloroprene has a high reactivity and should be stored away from oxidizing agents such as perchlorate, peroxides, permanganates, chlorates, nitrates, chlorine, bromine, and fluorine. All activities inducing a potential fire hazard should be avoided. For instance, smoking, having open flames or using sparking tools to open or close storage containers should be prohibited. It is also advised that grounded and bonded metal containers are used for the transport of chloroprene.

Occupational exposure limits

A table of occupational exposure limits (OELs) from various jurisdictions follows. In general, the OELs range from 0.55 ppm to 25 ppm.

Occupational exposure limits for chloroprene
Organization Concentration
NIOSH REL 1 ppm
ACGIH TLV 8-hour TWA 1 ppm
OSHA PEL 8-hour TWA 25 ppm
Mine Safety and Health Administration 25 ppm
Austria OEL MAK-TMW 5 ppm
Belgium OEL TWA 10 ppm
Denmark OEL ceiling concentration 1 ppm
Finland OEL TWA 1 ppm
France OEL VME 10 ppm
Hungary OEL TWA 5 ppm
Iceland OEL Short Term Exposure Limit (STEL) 1 ppm
Korea OEL TWA 10 ppm
Mexico OEL TWA 10 ppm
New Zealand OEL TWA 10 ppm
Norway OEL TWA 1 ppm
Peru OEL TWA 10 ppm
Poland OEL MAC TWA 0.55 ppm
Sweden OEL TWA 1 ppm
Switzerland OEL MAK-week 5 ppm
The Netherlands OEL MAC-TGG 5 ppm

In the ACGIH's 2018 TLV and BEI booklet, chloroprene was designated with a skin and an A2 notation. The skin notation designation is based on animal and human research that have shown chloroprene's ability to be absorbed by the skin. An A2 designation by the ACGIH means that the substance is a suspected human carcinogen with support from human data that are accepted as adequate in quality but may not be enough to declare an A1 (known human carcinogen) designation. Additionally, the TLV basis for these designations are due to scientific studies that show an association between chloroprene exposure and lung cancer, upper respiratory tract (URT) and eye irritation.

Chronic effects

Chloroprene is classified as a polytropic poison, and it causes organic disturbances in the nervous system and cardiovascular system. Examinations of the cardiovascular system show muffled heart sounds, reduced arterial pressure, and tachycardia. Within exposed workers, they report respiratory problems, eye and skin irritation, chest pains, and neurological symptoms.

Environment

The fate of chloroprene in the environment has been examined. Due to its volatility and extreme reactivity, it is not expected to bioaccumulate.

The only known environmental effect is related to how chloroprene is volatile and spreads rapidly through the air. This highly flammable component increases the possibility of causing a fire or explosion releasing irritating or toxic fumes (or gases).

In 2022, a request made by Denka to regulate chloroprene emissions was rejected by EPA. The request establishes a revision of EPA’s 2010 assessment of the chemical, arguing that the model used to estimate human cancer risk based on experiments, performed on mice, was not rigorous.

Transportation

Only stabilized chloroprene can be transported in U.S..

Effects on the human body

Chloroprene, if inhaled in any amount over 1ppm is toxic to the human body. Chloroprene is carcinogenic, can cause temporary hair loss on the exposed area, and can cause damage to the eyes and skin.

References

  1. ^ NIOSH Pocket Guide to Chemical Hazards. "#0133". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ "ß-Chloroprene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Manfred Rossberg, Wilhelm Lendle, Gerhard Pfleiderer, Adolf Tögel, Eberhard-Ludwig Dreher, Ernst Langer, Heinz Rassaerts, Peter Kleinschmidt, Heinz Strack, Richard Cook, Uwe Beck, Karl-August Lipper, Theodore R. Torkelson, Eckhard Löser, Klaus K. Beutel, "Chlorinated Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry, 2006 John Wiley-VCH: Weinheim. doi:10.1002/14356007.a06_233.pub2
  4. ^ Carothers, Wallace H.; Williams, Ira.; Collins, Arnold M.; Kirby, James E. (November 1931). "Acetylene Polymers and their Derivatives. II. A New Synthetic Rubber: Chloroprene and its Polymers". Journal of the American Chemical Society. 53 (11): 4203–4225. doi:10.1021/ja01362a042.
  5. Smith, John K. (January 1985). "The Ten-Year Invention: Neoprene and Du Pont Research, 1930-1939". Technology and Culture. 26 (1): 34–55. doi:10.2307/3104528. JSTOR 3104528. S2CID 113234844.
  6. "Hazard Communication Pictograms". U.S. Occupational Safety and Health Administration. Retrieved 2018-12-11.
  7. "OSHA Quick Card: Hazard Communication Standard Pictogram". U.S. Occupational Safety and Health Administration. Retrieved 2018-12-11.
  8. ^ Pubchem. "Chloroprene". pubchem.ncbi.nlm.nih.gov. Retrieved 2018-11-24.
  9. "Flammable liquids" (PDF). Occupational Safety and Health Administration. Retrieved 2018-12-14.
  10. "National Fire Protection Association (NFPA) Rating System" (PDF). www.fm.colostate.edu. Retrieved 2018-12-14.
  11. "Chloroprene, Stabilized | Cameo Chemicals | NOAA". cameochemicals.noaa.gov. Retrieved 2018-12-14.
  12. ^ U.S. EPA. IRIS Toxicological Review of Chloroprene (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/635/R-09/010F, 2010.
  13. "Current intelligence bulletin 1 - chloroprene". Centers for Disease Control and Prevention. 2018-10-16. doi:10.26616/NIOSHPUB781271.
  14. "The IRIS Review Process: Chloroprene and the Criticality of Good Science" (PDF). House Committee on Science, Space, and Technology Republicans. S2CID 33811055.
  15. Lynch, Jeremiah (2001-06-01). "Occupational exposure to butadiene, isoprene and chloroprene". Chemico-Biological Interactions. 135–136: 207–214. Bibcode:2001CBI...135..207L. doi:10.1016/S0009-2797(01)00191-0. ISSN 0009-2797. PMID 11397391.
  16. ^ Rickert, Annette; Hartung, Benno; Kardel, Bernd; Teloh, Johanna; Daldrup, Thomas (2012-02-10). "A fatal intoxication by chloroprene". Forensic Science International. 215 (1–3): 110–113. doi:10.1016/j.forsciint.2011.03.029. ISSN 0379-0738. PMID 21511420.
  17. "Hazardous Substance Fact Sheet" (PDF). New Jersey Department of Health and Senior Services.
  18. ^ "Template Package 4". Centers for Disease Control and Prevention. Retrieved 2018-11-24.
  19. Lowry, Larry K. (2004). "Definitions and Interpretations of Skin Notations and the Use of Biological Monitoring to Assess Total Exposure" (PDF). ACGIH.
  20. 2018 TLVs and BEIs: Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, 2018.
  21. Sanotskii, I V (October 1976). "Aspects of the toxicology of chloroprene: immediate and long-term effects". Environmental Health Perspectives. 17: 85–93. doi:10.1289/ehp.761785. ISSN 0091-6765. PMC 1475249.
  22. National Institute of Environmental Health Sciences. National Toxicology Program (2016). Report on Carcinogens, fourteenth edition. ISBN 978-1-5231-0852-7. OCLC 990561140.
  23. "Toxic Chemistry: Chloroprene, Health & Environment". www.greenspec.co.uk. Retrieved 2024-03-14.
  24. Lerner, Sharon (2022-03-17). "EPA Rejects Denka's Request to Weaken Assessment of Chloroprene". The Intercept. Retrieved 2024-03-14.
  25. https://nj.gov/health/eoh/rtkweb/documents/fs/0407.pdf

External links

Categories: