Misplaced Pages

Isotopes of actinium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Actinium-233)

Isotopes of actinium (89Ac)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Ac trace 9.919 d α Fr
CD Bi
Ac synth 29.37 h β Th
ε Ra
α Fr
Ac trace 21.772 y β Th
α Fr

Actinium (89Ac) has no stable isotopes and no characteristic terrestrial isotopic composition, thus a standard atomic weight cannot be given. There are 34 known isotopes, from Ac to Ac, and 7 isomers. Three isotopes are found in nature, Ac, Ac and Ac, as intermediate decay products of, respectively, Np, U, and Th. Ac and Ac are extremely rare, so almost all natural actinium is Ac.

The most stable isotopes are Ac with a half-life of 21.772 years, Ac with a half-life of 10.0 days, and Ac with a half-life of 29.37 hours. All other isotopes have half-lives under 10 hours, and most under a minute. The shortest-lived known isotope is Ac with a half-life of 69 ns.

Purified Ac comes into equilibrium with its decay products (Th and Fr) after 185 days.

List of isotopes


Nuclide
Historic
name
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Ac 89 114 56+269
−26 μs
α Fr (1/2+)
Ac 89 115 7.4+2.2
−1.4 ms
α Fr
Ac 89 116 7.7+2.7
−1.6 ms
α Fr 9/2−?
Ac 89 117 206.01450(8) 25(7) ms α Fr (3+)
Ac 80(50) keV 15(6) ms α Fr
Ac 290(110)# keV 41(16) ms α Fr (10−)
Ac 89 118 207.01195(6) 31(8) ms
α Fr 9/2−#
Ac 89 119 208.01155(6) 97(16) ms
α (99%) Fr (3+)
β (1%) Ra
Ac 506(26) keV 28(7) ms
α (89%) Fr (10−)
IT (10%) Ac
β (1%) Ra
Ac 89 120 209.00949(5) 92(11) ms α (99%) Fr (9/2−)
β (1%) Ra
Ac 89 121 210.00944(6) 350(40) ms α (96%) Fr 7+#
β (4%) Ra
Ac 89 122 211.00773(8) 213(25) ms α (99.8%) Fr 9/2−#
β (.2%) Ra
Ac 89 123 212.00781(7) 920(50) ms α (97%) Fr 6+#
β (3%) Ra
Ac 89 124 213.00661(6) 731(17) ms α Fr (9/2−)#
β (rare) Ra
Ac 89 125 214.006902(24) 8.2(2) s α (89%) Fr (5+)#
β (11%) Ra
Ac 89 126 215.006454(23) 0.17(1) s α (99.91%) Fr 9/2−
β (.09%) Ra
Ac 89 127 216.008720(29) 440(16) μs α Fr (1−)
Ac 38(5) keV 441(7) μs α Fr (9−)
Ac 422#(100#) keV ~300 ns IT Ac
Ac 89 128 217.009347(14) 69(4) ns α Fr 9/2−
Ac 2012(20) keV 740(40) ns (29/2)+
Ac 89 129 218.01164(5) 1.08(9) μs α Fr (1−)#
Ac 607(86)# keV 103(11) ns IT Ac (11+)
Ac 89 130 219.01242(5) 11.8(15) μs α Fr 9/2−
β (10%) Ra
Ac 89 131 220.014763(16) 26.36(19) ms α Fr (3−)
β (5×10%) Ra
Ac 89 132 221.01559(5) 52(2) ms α Fr 9/2−#
Ac 89 133 222.017844(6) 5.0(5) s α (99%) Fr 1−
β (1%) Ra
Ac 200(150)# keV 1.05(7) min α (88.6%) Fr high
IT (10%) Ac
β (1.4%) Ra
Ac 89 134 223.019137(8) 2.10(5) min α (99%) Fr (5/2−)
EC (1%) Ra
CD (3.2×10%) Bi
C
Ac 89 135 224.021723(4) 2.78(17) h β (90.9%) Ra 0−
α (9.1%) Fr
β (1.6%) Th
Ac 89 136 225.023230(5) 10.0(1) d α Fr (3/2−) Trace
CD (6×10%) Bi
C
Ac 89 137 226.026098(4) 29.37(12) h β (83%) Th (1)(−#)
EC (17%) Ra
α (.006%) Fr
Ac Actinium 89 138 227.0277521(26) 21.772(3) y β (98.62%) Th 3/2− Trace
α (1.38%) Fr
Ac Mesothorium 2 89 139 228.0310211(27) 6.13(2) h β Th 3+ Trace
Ac 89 140 229.03302(4) 62.7(5) min β Th (3/2+)
Ac 89 141 230.03629(32) 122(3) s β Th (1+)
Ac 89 142 231.03856(11) 7.5(1) min β Th (1/2+)
Ac 89 143 232.04203(11) 119(5) s β Th (1+)
Ac 89 144 233.04455(32)# 145(10) s β Th (1/2+)
Ac 89 145 234.04842(43)# 44(7) s β Th
Ac 89 146 235.05123(38)# 60(4) s β Th 1/2+#
Ac 89 147 236.05530(54)# 72+345
−33 s
β Th
This table header & footer:
  1. Ac – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    IT: Isomeric transition
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. Has medical uses
  9. Intermediate decay product of Np
  10. Source of element's name
  11. Intermediate decay product of U
  12. Intermediate decay product of Th

Actinides vs fission products

Actinides and fission products by half-life
Actinides by decay chain Half-life
range (a)
Fission products of U by yield
4n 4n + 1 4n + 2 4n + 3 4.5–7% 0.04–1.25% <0.001%
Ra 4–6 a Eu
Bk > 9 a
Cm Pu Cf Ac 10–29 a Sr Kr Cd
U Pu Cm 29–97 a Cs Sm Sn
Cf Am 141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

Am Cf 430–900 a
Ra Bk 1.3–1.6 ka
Pu Th Cm Am 4.7–7.4 ka
Cm Cm 8.3–8.5 ka
Pu 24.1 ka
Th Pa 32–76 ka
Np U U 150–250 ka Tc Sn
Cm Pu 327–375 ka Se
1.33 Ma Cs
Np 1.61–6.5 Ma Zr Pd
U Cm 15–24 Ma I
Pu 80 Ma

... nor beyond 15.7 Ma

Th U U 0.7–14.1 Ga

Notable isotopes

Actinium-225

Main article: Actinium-225

Actinium-225 is a highly radioactive isotope with 136 neutrons. It is an alpha emitter and has a half-life of 9.919 days. As of 2024, it is being researched as a possible alpha source in targeted alpha therapy. Actinium-225 undergoes a series of three alpha decays – via the short-lived francium-221 and astatine-217 – to Bi, which itself is used as an alpha source. Another benefit is that the decay chain of Ac ends in the nuclide Bi, which has a considerably shorter biological half-life than lead. However, a major factor limiting its usage is the difficulty in producing the short-lived isotope, as it is most commonly isolated from aging parent nuclides (such as U); it may also be produced in cyclotrons, linear accelerators, or fast breeder reactors.

Actinium-226

Actinium-226 is an isotope of actinium with a half-life of 29.37 hours. It mainly (83%) undergos beta decay, sometimes (17%) undergo electron capture, and rarely (0.006%) undergo alpha decay. There are researches on Ac to use it in SPECT.

Actinium-227

Actinium-227 is the most stable isotope of actinium, with a half-life of 21.772 years. It mainly (98.62%) undergos beta decay, but sometimes (1.38%) it will undergo alpha decay instead. Ac is a member of the actinium series. It is found only in traces in uranium ores – one tonne of uranium in ore contains about 0.2 milligrams of Ac. Ac is prepared, in milligram amounts, by the neutron irradiation of Ra in a nuclear reactor.

Ra 88 226 + n 0 1 Ra 88 227 42.2   min β Ac 89 227 {\displaystyle {\ce {^{226}_{88}Ra + ^{1}_{0}n -> ^{227}_{88}Ra -> ^{227}_{89}Ac}}}

Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs. In all those applications, Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:

Be 4 9 + He 2 4 C 6 12 + n 0 1 + γ {\displaystyle {\ce {^{9}_{4}Be + ^{4}_{2}He -> ^{12}_{6}C + ^{1}_{0}n + \gamma}}}

The AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction. Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.

The medium half-life of Ac makes it a very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed U. Its decay product, Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. Pa decays to Ac; however, the concentration of the latter isotope does not follow the Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional Ac from the sea bottom. Thus analysis of both Pa and Ac depth profiles allows researchers to model the mixing behavior.

See also

Notes

  1. Bismuth-209 decays into thallium-205 with a half-life exceeding 10 years, but this half-life is so long that for practical purposes bismuth-209 can be considered stable.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. G. D. Considine, ed. (2005). "Chemical Elements". Van Nostrand's Encyclopedia of Chemistry. Wiley-Interscience. p. 332. ISBN 978-0-471-61525-5.
  3. Wang, J. G.; Gan, Z. G.; Zhang, Z. Y.; et al. (1 March 2024). "α-decay properties of new neutron-deficient isotope 203Ac". Physics Letters B. 850: 138503. doi:10.1016/j.physletb.2024.138503. ISSN 0370-2693.
  4. ^ Huang, M. H.; Gan, Z. G.; Zhang, Z. Y.; et al. (10 November 2022). "α decay of the new isotope Ac". Physics Letters B. 834: 137484. Bibcode:2022PhLB..83437484H. doi:10.1016/j.physletb.2022.137484. ISSN 0370-2693. S2CID 252730841.
  5. Zhang, Z. Y.; Gan, Z. G.; Ma, L.; et al. (January 2014). "α decay of the new neutron-deficient isotope Ac". Physical Review C. 89 (1): 014308. Bibcode:2014PhRvC..89a4308Z. doi:10.1103/PhysRevC.89.014308.
  6. Chen, L.; et al. (2010). "Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range from thallium to actinium" (PDF). Physics Letters B. 691 (5): 234–237. Bibcode:2010PhLB..691..234C. doi:10.1016/j.physletb.2010.05.078.
  7. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  8. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  9. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk with a half-life greater than 9 . No growth of Cf was detected, and a lower limit for the β half-life can be set at about 10 . No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 ."
  10. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  11. Excluding those "classically stable" nuclides with half-lives significantly in excess of Th; e.g., while Cd has a half-life of only fourteen years, that of Cd is eight quadrillion years.
  12. A. Scheinberg, David; R. McDevitt, Michael (1 October 2011). "Actinium-225 in Targeted Alpha-Particle Therapeutic Applications". Current Radiopharmaceuticals. 4 (4): 306–320. doi:10.2174/1874471011104040306. PMC 5565267. PMID 22202153.
  13. Reissig, Falco; Bauer, David; Zarschler, Kristof; Novy, Zbynek; Bendova, Katerina; Ludik, Marie-Charlotte; Kopka, Klaus; Pietzsch, Hans-Jürgen; Petrik, Milos; Mamat, Constantin (20 April 2021). "Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study". Cancers. 13 (8): 1974. doi:10.3390/cancers13081974. PMC 8073976. PMID 33923965.
  14. Bidkar, Anil P.; Zerefa, Luann; Yadav, Surekha; VanBrocklin, Henry F.; Flavell, Robert R. (2024). "Actinium-225 targeted alpha particle therapy for prostate cancer". Theranostics. 14 (7): 2969–2992. doi:10.7150/thno.96403.
  15. Ahenkorah, Stephen; Cassells, Irwin; Deroose, Christophe M.; Cardinaels, Thomas; Burgoyne, Andrew R.; Bormans, Guy; Ooms, Maarten; Cleeren, Frederik (21 April 2021). "Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside". Pharmaceutics. 13 (5): 599. doi:10.3390/pharmaceutics13050599. PMC 8143329.
  16. Handbook on the toxicology of metals. Volume 2: Specific metals (Fourth ed.). Amsterdam Boston Heidelberg London: Elsevier, Aademic Press. 2015. p. 655. ISBN 978-0-12-398293-3.
  17. Wani, Ab Latif; Ara, Anjum; Usmani, Jawed Ahmad (1 June 2015). "Lead toxicity: a review". Interdisciplinary Toxicology. 8 (2): 55–64. doi:10.1515/intox-2015-0009. PMC 4961898.
  18. Dhiman, Deeksha; Vatsa, Rakhee; Sood, Ashwani (September 2022). "Challenges and opportunities in developing Actinium-225 radiopharmaceuticals". Nuclear Medicine Communications. 43 (9): 970–977. doi:10.1097/MNM.0000000000001594. PMID 35950353.
  19. Koniar, Helena; Rodríguez-Rodríguez, Cristina; Radchenko, Valery; Yang, Hua; Kunz, Peter; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2022-09-12). "SPECT imaging of Ac as a theranostic isotope for Ac radiopharmaceutical development". Physics in Medicine and Biology. 67 (18). doi:10.1088/1361-6560/ac8b5f. ISSN 1361-6560. PMID 35985341.
  20. Koniar, Helena; Wharton, Luke; Ingham, Aidan; Rodríguez-Rodríguez, Cristina; Kunz, Peter; Radchenko, Valery; Yang, Hua; Rahmim, Arman; Uribe, Carlos; Schaffer, Paul (2024-07-16). "In vivoquantitative SPECT imaging of actinium-226: feasibility and proof-of-concept". Physics in Medicine and Biology. 69 (15). doi:10.1088/1361-6560/ad5c37. ISSN 1361-6560. PMID 38925140.
  21. Hagemann, French (1950). "The Isolation of Actinium". Journal of the American Chemical Society. 72 (2): 768–771. doi:10.1021/ja01158a033.
  22. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 946. ISBN 978-0-08-037941-8.
  23. Emeleus, H. J. (1987). Advances in inorganic chemistry and radiochemistry. Academic Press. pp. 16–. ISBN 978-0-12-023631-2.
  24. Russell, Alan M. and Lee, Kok Loong (2005) Structure-property relations in nonferrous metals. Wiley. ISBN 0-471-64952-X, pp. 470–471
  25. Majumdar, D. K. (2004) Irrigation Water Management: Principles and Practice. ISBN 81-203-1729-7 p. 108
  26. Chandrasekharan, H. and Gupta, Navindu (2006) Fundamentals of Nuclear Science – Application in Agriculture. ISBN 81-7211-200-9 pp. 202 ff
  27. Dixon, W. R.; Bielesch, Alice; Geiger, K. W. (1957). "Neutron Spectrum of an Actinium–Beryllium Source". Can. J. Phys. 35 (6): 699–702. Bibcode:1957CaJPh..35..699D. doi:10.1139/p57-075.
  28. Nozaki, Yoshiyuki (1984). "Excess Ac in deep ocean water". Nature. 310 (5977): 486–488. Bibcode:1984Natur.310..486N. doi:10.1038/310486a0. S2CID 4344946.
  29. Geibert, W.; Rutgers Van Der Loeff, M. M.; Hanfland, C.; Dauelsberg, H.-J. (2002). "Actinium-227 as a deep-sea tracer: sources, distribution and applications". Earth and Planetary Science Letters. 198 (1–2): 147–165. Bibcode:2002E&PSL.198..147G. doi:10.1016/S0012-821X(02)00512-5.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: