Misplaced Pages

Isotopes of americium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Americium-245)

Isotopes of americium (95Am)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Am synth 432.2 y α Np
SF
Am synth 141 y IT Am
α Np
SF
Am synth 7350 y α Np
SF

Americium (95Am) is an artificial element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no known stable isotopes. The first isotope to be synthesized was Am in 1944. The artificial element decays by ejecting alpha particles. Americium has an atomic number of 95 (the number of protons in the nucleus of the americium atom). Despite
Am being an order of magnitude longer lived than
Am, the former is harder to obtain than the latter as more of it is present in spent nuclear fuel.

Eighteen radioisotopes of americium, ranging from Am to Am with the exception of Am, have been characterized; another isotope, Am, has also been reported but is unconfirmed. The most stable isotopes are Am with a half-life of 7,370 years and Am with a half-life of 432.2 years. All of the remaining radioactive isotopes have half-lives that are less than 51 hours, and the majority of these have half-lives that are less than 100 minutes. This element also has 8 meta states, with the most stable being Am (t1/2 = 141 years). This isomer is unusual in that its half-life is far longer than that of the ground state of the same isotope.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Excitation energy
Am 95 128 223.04584(32)# 10(9) ms α Np 9/2–#
Am 95 134 229.04528(11) 1.8(15) s α Np 5/2–#
Am 95 135 230.04603(15)# 40(9) s β (<70%) Pu 1–#
βSF (>30%) (various)
Am 95 137 232.04661(32)# 1.31(4) min β (97%) Pu 1–#
α (3%) Np
βSF (0.069%) (various)
Am 95 138 233.04647(12)# 3.2(8) min β (95.5%) Pu 5/2–#
α (4.5%) Np
Am 95 139 234.04773(17)# 2.32(8) min β (99.95%) Pu 0–#
α (0.039%) Np
β, SF (0.0066%) (various)
Am 95 140 235.047906(57) 10.3(6) min β (99.60%) Pu 5/2−#
α (0.40%) Np
Am 95 141 236.04943(13)# 3.6(1) min β Pu 5−
α (4×10%) Np
Am 50(50)# keV 2.9(2) min β Pu (1−)
α ? Np
Am 95 142 237.049995(64)# 73.6(8) min β (99.975%) Pu 5/2−
α (.025%) Np
Am 95 143 238.051983(63) 98(3) min β Pu 1+
α (1.0×10%) Np
Am 2500(200)# keV 35(18) μs SF (various)
IT ? Am
Am 95 144 239.0530227(21) 11.9(1) h EC (99.99%) Pu 5/2−
α (0.01%) Np
Am 2500(200) keV 163(12) ns SF (various) (7/2+)
IT ? Am
Am 95 145 240.055298(15) 50.8(3) h β Pu (3−)
α (1.9×10%) Np
Am 3000(200) keV 940(40) μs SF (various)
IT ? Am
Am 95 146 241.0568273(12) 432.6(6) y α Np 5/2−
SF (3.6×10%) (various)
Am 2200(200) keV 1.2(3) μs SF (various)
Am 95 147 242.0595474(12) 16.02(2) h β (82.7%) Cm 1−
EC (17.3%) Pu
Am 48.60(5) keV 141(2) y IT (99.54%) Am 5−
α (.46%) Np
SF ? (various)
Am 2200(80) keV 14.0(10) ms SF (various) (2+, 3−)
IT ? Am
Am 95 148 243.0613799(15) 7,350(9) y α Np 5/2−
SF (3.7×10%) (various)
Am 2300(200) keV 5.5(5) μs SF (various)
IT ? Am
Am 95 149 244.0642829(16) 10.01(3) h β Cm (6−)
Am 89.3(16) keV 26.13(43) min β (99.96%) Cm 1+
EC (0.0364%) Pu
Am 2000(200)# 900(150) μs SF (various)
IT ? Am
Am 2200(200)# ~6.5 μs SF (various)
IT ? Am
Am 95 150 245.0664528(20) 2.05(1) h β Cm 5/2+
Am 2400(400)# 640(60) ns SF (various)
IT ? Am
Am 95 151 246.069774(19)# 39(3) min β Cm (7−)
Am 30(10)# keV 25.0(2) min β Cm 2(−)
IT ? Am
Am 2000(800)# keV 73(10) μs SF (various)
IT ? Am
Am 95 152 247.07209(11)# 23.0(13) min β Cm 5/2#
This table header & footer:
  1. Am – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    IT: Isomeric transition
    SF: Spontaneous fission
  5. ( ) spin value – Indicates spin with weak assignment arguments.
  6. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. The discovery of this isotope is uncertain due to disagreements between theoretical predictions and reported experimental data.

Actinides vs fission products

Actinides and fission products by half-life
Actinides by decay chain Half-life
range (a)
Fission products of U by yield
4n 4n + 1 4n + 2 4n + 3 4.5–7% 0.04–1.25% <0.001%
Ra 4–6 a Eu
Bk > 9 a
Cm Pu Cf Ac 10–29 a Sr Kr Cd
U Pu Cm 29–97 a Cs Sm Sn
Cf Am 141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

Am Cf 430–900 a
Ra Bk 1.3–1.6 ka
Pu Th Cm Am 4.7–7.4 ka
Cm Cm 8.3–8.5 ka
Pu 24.1 ka
Th Pa 32–76 ka
Np U U 150–250 ka Tc Sn
Cm Pu 327–375 ka Se
1.33 Ma Cs
Np 1.61–6.5 Ma Zr Pd
U Cm 15–24 Ma I
Pu 80 Ma

... nor beyond 15.7 Ma

Th U U 0.7–14.1 Ga

Notable isotopes

Americium-241

Americium-241 is used in ionization smoke detectors.
Main article: Americium-241

Americium-241 is the most common isotope of americium in nuclear waste. It is the isotope used in an americium smoke detector based on an ionization chamber. It is a potential fuel for long-lifetime radioisotope thermoelectric generators.

Parameter Value
Atomic mass 241.056829 u
Mass excess 52930 keV
Beta decay energy −767 keV
Spin 5/2−
Half-life 432.6 years
Spontaneous fissions 1200 per kg s
Decay heat 114 watts/kg

Possible parent nuclides: beta from Pu, electron capture from Cm, alpha from Bk.

Am alpha decays, with a by-product of gamma rays. Its presence in plutonium is determined by the original concentration of Pu and the sample age. Due to the low penetration of alpha radiation, Am only poses a health risk when ingested or inhaled. Older samples of plutonium containing plutonium-241 contain a buildup of Am. A chemical removal of americium from reworked plutonium (e.g. during reworking of plutonium pits) may be required.

Americium-242m

Transmutation flow between Pu and Cm in LWR.
Fission percentage is 100 minus shown percentages.
Total rate of transmutation varies greatly by nuclide.
Cm–Cm are long-lived with negligible decay.
Am decay modes (half-life: 141 years)
Probability Decay mode Decay energy Decay product
99.54% isomeric transition 0.05 MeV Am
  0.46% alpha decay 5.64 MeV Np
(1.5±0.6) × 10  spontaneous fission ~200 MeV fission products

Americium-242m has a mass of 242.0595492 g/mol. It is one of the rare cases, like Ag, Ho, Ta, Re, Ir, Bi, Po and others, where a higher-energy nuclear isomer is more stable than the ground state, americium-242.

Am is fissile with a low critical mass, comparable to that of Pu. It has a very high fission cross section, and is quickly destroyed if it is produced in a nuclear reactor. It has been investigated whether this isotope could be used for a novel type of nuclear rocket.

Am decay modes (half-life: 16 hours)
Probability Decay mode Decay energy Decay product
82.70% beta decay 0.665 MeV Cm
17.30% electron capture 0.751 MeV Pu

Americium-243

A sample of Am-243

Americium-243 has a mass of 243.06138 g/mol and a half-life of 7,370 years, the longest lasting of all americium isotopes. It is formed in the nuclear fuel cycle by neutron capture on plutonium-242 followed by beta decay. Production increases exponentially with increasing burnup as a total of 5 neutron captures on U are required. If MOX-fuel is used, particularly MOX-fuel high in
Pu and
Pu, more americium overall and more
Am will be produced.

It decays by either emitting an alpha particle (with a decay energy of 5.27 MeV) to become Np, which then quickly decays to Pu, or rarely, by spontaneous fission.

As for the other americium isotopes, and more generally for all alpha emitters, Am is carcinogenic in case of internal contamination after being inhaled or ingested. Am also presents a risk of external irradiation associated with the gamma ray emitted by its short-lived decay product Np. The external irradiation risk for the other two americium isotopes (Am and Am) is less than 10% of that for americium-243.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Sun, M. D.; et al. (2017). "New short-lived isotope Np and the absence of the Z = 92 subshell closure near N = 126". Physics Letters B. 771: 303–308. Bibcode:2017PhLB..771..303S. doi:10.1016/j.physletb.2017.03.074.
  3. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  4. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  5. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk with a half-life greater than 9 . No growth of Cf was detected, and a lower limit for the β half-life can be set at about 10 . No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 ."
  6. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  7. Excluding those "classically stable" nuclides with half-lives significantly in excess of Th; e.g., while Cd has a half-life of only fourteen years, that of Cd is eight quadrillion years.
  8. ^ "Americium" Archived 2012-07-30 at the Wayback Machine. Argonne National Laboratory, EVS. Retrieved 25 December 2009.
  9. Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, Giorgos; Papaioannou, Dimitri (April 2004). "Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels". Journal of Nuclear Science and Technology. 41 (4): 448–456. doi:10.3327/jnst.41.448.
  10. J. T. Caldwell; S. C. Fultz; C. D. Bowman; R. W. Hoff (March 1967). "Spontaneous Fission Half-Life of Am". Physical Review. 155 (4): 1309–1313. Bibcode:1967PhRv..155.1309C. doi:10.1103/PhysRev.155.1309. (halflife (9.5±3.5)×10 years)
  11. 95-Am-242 Archived 2011-07-19 at the Wayback Machine
  12. "Critical Mass Calculations for Am, Am and Am" (PDF). Archived from the original (PDF) on July 22, 2011. Retrieved February 3, 2011.
  13. "Extremely Efficient Nuclear Fuel Could Take Man To Mars In Just Two Weeks" (Press release). Ben-Gurion University Of The Negev. December 28, 2000.
  14. Ronen, Yigal; Shwageraus, E. (2000). "Ultra-thin 241mAm fuel elements in nuclear reactors". Nuclear Instruments and Methods in Physics Research A. 455 (2): 442–451. Bibcode:2000NIMPA.455..442R. doi:10.1016/s0168-9002(00)00506-4.
  15. ^ "Americium-243" Archived 2011-02-25 at the Wayback Machine. Oak Ridge National Laboratory. Retrieved 25 December 2009.
  16. "Isotopes of the Element Americium". Jefferson Lab Science Education. Retrieved 25 December 2009.

Sources

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: