Misplaced Pages

Balanced polygamma function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the generalized polygamma function or balanced negapolygamma function is a function introduced by Olivier Espinosa Aldunate and Victor Hugo Moll.

It generalizes the polygamma function to negative and fractional order, but remains equal to it for integer positive orders.

Definition

The generalized polygamma function is defined as follows:

ψ ( z , q ) = ζ ( z + 1 , q ) + ( ψ ( z ) + γ ) ζ ( z + 1 , q ) Γ ( z ) {\displaystyle \psi (z,q)={\frac {\zeta '(z+1,q)+{\bigl (}\psi (-z)+\gamma {\bigr )}\zeta (z+1,q)}{\Gamma (-z)}}}

or alternatively,

ψ ( z , q ) = e γ z z ( e γ z ζ ( z + 1 , q ) Γ ( z ) ) , {\displaystyle \psi (z,q)=e^{-\gamma z}{\frac {\partial }{\partial z}}\left(e^{\gamma z}{\frac {\zeta (z+1,q)}{\Gamma (-z)}}\right),}

where ψ(z) is the polygamma function and ζ(z,q), is the Hurwitz zeta function.

The function is balanced, in that it satisfies the conditions

f ( 0 ) = f ( 1 ) and 0 1 f ( x ) d x = 0 {\displaystyle f(0)=f(1)\quad {\text{and}}\quad \int _{0}^{1}f(x)\,dx=0} .

Relations

Several special functions can be expressed in terms of generalized polygamma function.

ψ ( x ) = ψ ( 0 , x ) ψ ( n ) ( x ) = ψ ( n , x ) n N Γ ( x ) = exp ( ψ ( 1 , x ) + 1 2 ln 2 π ) ζ ( z , q ) = Γ ( 1 z ) ln 2 ( 2 z ψ ( z 1 , q + 1 2 ) + 2 z ψ ( z 1 , q 2 ) ψ ( z 1 , q ) ) ζ ( 1 , x ) = ψ ( 2 , x ) + x 2 2 x 2 + 1 12 B n ( q ) = Γ ( n + 1 ) ln 2 ( 2 n 1 ψ ( n , q + 1 2 ) + 2 n 1 ψ ( n , q 2 ) ψ ( n , q ) ) {\displaystyle {\begin{aligned}\psi (x)&=\psi (0,x)\\\psi ^{(n)}(x)&=\psi (n,x)\qquad n\in \mathbb {N} \\\Gamma (x)&=\exp \left(\psi (-1,x)+{\tfrac {1}{2}}\ln 2\pi \right)\\\zeta (z,q)&={\frac {\Gamma (1-z)}{\ln 2}}\left(2^{-z}\psi \left(z-1,{\frac {q+1}{2}}\right)+2^{-z}\psi \left(z-1,{\frac {q}{2}}\right)-\psi (z-1,q)\right)\\\zeta '(-1,x)&=\psi (-2,x)+{\frac {x^{2}}{2}}-{\frac {x}{2}}+{\frac {1}{12}}\\B_{n}(q)&=-{\frac {\Gamma (n+1)}{\ln 2}}\left(2^{n-1}\psi \left(-n,{\frac {q+1}{2}}\right)+2^{n-1}\psi \left(-n,{\frac {q}{2}}\right)-\psi (-n,q)\right)\end{aligned}}}

where Bn(q) are the Bernoulli polynomials

K ( z ) = A exp ( ψ ( 2 , z ) + z 2 z 2 ) {\displaystyle K(z)=A\exp \left(\psi (-2,z)+{\frac {z^{2}-z}{2}}\right)}

where K(z) is the K-function and A is the Glaisher constant.

Special values

The balanced polygamma function can be expressed in a closed form at certain points (where A is the Glaisher constant and G is the Catalan constant):

ψ ( 2 , 1 4 ) = 1 8 ln A + G 4 π ψ ( 2 , 1 2 ) = 1 2 ln A 1 24 ln 2 ψ ( 3 , 1 2 ) = 3 ζ ( 3 ) 32 π 2 ψ ( 2 , 1 ) = ln A ψ ( 3 , 1 ) = ζ ( 3 ) 8 π 2 ψ ( 2 , 2 ) = ln A 1 ψ ( 3 , 2 ) = ζ ( 3 ) 8 π 2 3 4 {\displaystyle {\begin{aligned}\psi \left(-2,{\tfrac {1}{4}}\right)&={\tfrac {1}{8}}\ln A+{\frac {G}{4\pi }}&&\\\psi \left(-2,{\tfrac {1}{2}}\right)&={\tfrac {1}{2}}\ln A-{\tfrac {1}{24}}\ln 2&\\\psi \left(-3,{\tfrac {1}{2}}\right)&={\frac {3\zeta (3)}{32\pi ^{2}}}\\\psi (-2,1)&=-\ln A&\\\psi (-3,1)&={\frac {-\zeta (3)}{8\pi ^{2}}}\\\psi (-2,2)&=-\ln A-1&\\\psi (-3,2)&={\frac {-\zeta (3)}{8\pi ^{2}}}-{\tfrac {3}{4}}\\\end{aligned}}}

References

  1. Espinosa, Olivier; Moll, Victor Hugo (Apr 2004). "A Generalized polygamma function" (PDF). Integral Transforms and Special Functions. 15 (2): 101–115. doi:10.1080/10652460310001600573.Open access icon
Category: