7-orthoplex |
Rectified 7-orthoplex |
Birectified 7-orthoplex |
Trirectified 7-orthoplex |
Birectified 7-cube |
Rectified 7-cube |
7-cube | |
Orthogonal projections in B7 Coxeter plane |
---|
In seven-dimensional geometry, a rectified 7-orthoplex is a convex uniform 7-polytope, being a rectification of the regular 7-orthoplex.
There are unique 7 degrees of rectifications, the zeroth being the 7-orthoplex, and the 6th and last being the 7-cube. Vertices of the rectified 7-orthoplex are located at the edge-centers of the 7-orthoplex. Vertices of the birectified 7-orthoplex are located in the triangular face centers of the 7-orthoplex. Vertices of the trirectified 7-orthoplex are located in the tetrahedral cell centers of the 7-orthoplex.
Rectified 7-orthoplex
Rectified 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | r{3,3,3,3,3,4} |
Coxeter-Dynkin diagrams | |
6-faces | 142 |
5-faces | 1344 |
4-faces | 3360 |
Cells | 3920 |
Faces | 2520 |
Edges | 840 |
Vertices | 84 |
Vertex figure | 5-orthoplex prism |
Coxeter groups | B7, D7, |
Properties | convex |
The rectified 7-orthoplex is the vertex figure for the demihepteractic honeycomb. The rectified 7-orthoplex's 84 vertices represent the kissing number of a sphere-packing constructed from this honeycomb.
- or
Alternate names
- rectified heptacross
- rectified hecatonicosoctaexon (Acronym rez) (Jonathan Bowers) - rectified 128-faceted polyexon
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | |||
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry |
Construction
There are two Coxeter groups associated with the rectified heptacross, one with the C7 or Coxeter group, and a lower symmetry with two copies of pentacross facets, alternating, with the D7 or Coxeter group.
Cartesian coordinates
Cartesian coordinates for the vertices of a rectified heptacross, centered at the origin, edge length are all permutations of:
- (±1,±1,0,0,0,0,0)
Root vectors
Its 84 vertices represent the root vectors of the simple Lie group D7. The vertices can be seen in 3 hyperplanes, with the 21 vertices rectified 6-simplexs cells on opposite sides, and 42 vertices of an expanded 6-simplex passing through the center. When combined with the 14 vertices of the 7-orthoplex, these vertices represent the 98 root vectors of the B7 and C7 simple Lie groups.
Birectified 7-orthoplex
Birectified 7-orthoplex | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | 2r{3,3,3,3,3,4} |
Coxeter-Dynkin diagrams | |
6-faces | 142 |
5-faces | 1428 |
4-faces | 6048 |
Cells | 10640 |
Faces | 8960 |
Edges | 3360 |
Vertices | 280 |
Vertex figure | {3}×{3,3,4} |
Coxeter groups | B7, D7, |
Properties | convex |
Alternate names
- Birectified heptacross
- Birectified hecatonicosoctaexon (Acronym barz) (Jonathan Bowers) - birectified 128-faceted polyexon
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | |||
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry |
Cartesian coordinates
Cartesian coordinates for the vertices of a birectified 7-orthoplex, centered at the origin, edge length are all permutations of:
- (±1,±1,±1,0,0,0,0)
Trirectified 7-orthoplex
A trirectified 7-orthoplex is the same as a trirectified 7-cube.
Notes
- Klitzing, (o3o3x3o3o3o4o - rez)
- Klitzing, (o3o3x3o3o3o4o - barz)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "7D uniform polytopes (polyexa)". o3x3o3o3o3o4o - rez, o3o3x3o3o3o4o - barz
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |