7-cube |
Rectified 7-cube |
Birectified 7-cube |
Trirectified 7-cube |
Birectified 7-orthoplex |
Rectified 7-orthoplex |
7-orthoplex | |
Orthogonal projections in B7 Coxeter plane |
---|
In seven-dimensional geometry, a rectified 7-cube is a convex uniform 7-polytope, being a rectification of the regular 7-cube.
There are unique 7 degrees of rectifications, the zeroth being the 7-cube, and the 6th and last being the 7-cube. Vertices of the rectified 7-cube are located at the edge-centers of the 7-ocube. Vertices of the birectified 7-cube are located in the square face centers of the 7-cube. Vertices of the trirectified 7-cube are located in the cube cell centers of the 7-cube.
Rectified 7-cube
Rectified 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | r{4,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | 128 + 14 |
5-faces | 896 + 84 |
4-faces | 2688 + 280 |
Cells | 4480 + 560 |
Faces | 4480 + 672 |
Edges | 2688 |
Vertices | 448 |
Vertex figure | 5-simplex prism |
Coxeter groups | B7, |
Properties | convex |
Alternate names
- rectified hepteract (Acronym rasa) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | |||
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry |
Cartesian coordinates
Cartesian coordinates for the vertices of a rectified 7-cube, centered at the origin, edge length are all permutations of:
- (±1,±1,±1,±1,±1,±1,0)
Birectified 7-cube
Birectified 7-cube | |
---|---|
Type | uniform 7-polytope |
Coxeter symbol | 0411 |
Schläfli symbol | 2r{4,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | 128 + 14 |
5-faces | 448 + 896 + 84 |
4-faces | 2688 + 2688 + 280 |
Cells | 6720 + 4480 + 560 |
Faces | 8960 + 4480 |
Edges | 6720 |
Vertices | 672 |
Vertex figure | {3}x{3,3,3} |
Coxeter groups | B7, |
Properties | convex |
Alternate names
- Birectified hepteract (Acronym bersa) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | |||
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry |
Cartesian coordinates
Cartesian coordinates for the vertices of a birectified 7-cube, centered at the origin, edge length are all permutations of:
- (±1,±1,±1,±1,±1,0,0)
Trirectified 7-cube
Trirectified 7-cube | |
---|---|
Type | uniform 7-polytope |
Schläfli symbol | 3r{4,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | 128 + 14 |
5-faces | 448 + 896 + 84 |
4-faces | 672 + 2688 + 2688 + 280 |
Cells | 3360 + 6720 + 4480 |
Faces | 6720 + 8960 |
Edges | 6720 |
Vertices | 560 |
Vertex figure | {3,3}x{3,3} |
Coxeter groups | B7, |
Properties | convex |
Alternate names
- Trirectified hepteract
- Trirectified 7-orthoplex
- Trirectified heptacross (Acronym sez) (Jonathan Bowers)
Images
Coxeter plane | B7 / A6 | B6 / D7 | B5 / D6 / A4 |
---|---|---|---|
Graph | |||
Dihedral symmetry | |||
Coxeter plane | B4 / D5 | B3 / D4 / A2 | B2 / D3 |
Graph | |||
Dihedral symmetry | |||
Coxeter plane | A5 | A3 | |
Graph | |||
Dihedral symmetry |
Cartesian coordinates
Cartesian coordinates for the vertices of a trirectified 7-cube, centered at the origin, edge length are all permutations of:
- (±1,±1,±1,±1,0,0,0)
Related polytopes
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | n |
---|---|---|---|---|---|---|---|---|
Name | t{4} | r{4,3} | 2t{4,3,3} | 2r{4,3,3,3} | 3t{4,3,3,3,3} | 3r{4,3,3,3,3,3} | 4t{4,3,3,3,3,3,3} | ... |
Coxeter diagram |
||||||||
Images | ||||||||
Facets | {3} {4} |
t{3,3} t{3,4} |
r{3,3,3} r{3,3,4} |
2t{3,3,3,3} 2t{3,3,3,4} |
2r{3,3,3,3,3} 2r{3,3,3,3,4} |
3t{3,3,3,3,3,3} 3t{3,3,3,3,3,4} | ||
Vertex figure |
( )v( ) | { }×{ } |
{ }v{ } |
{3}×{4} |
{3}v{4} |
{3,3}×{3,4} | {3,3}v{3,4} |
Notes
- Klitzing, (o3o3o3o3o3x4o - rasa)
- Klitzing, (o3o3o3o3x3o4o - bersa)
- Klitzing, (o3o3o3x3o3o4o - sez)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "7D uniform polytopes (polyexa)". o3o3o3x3o3o4o - sez, o3o3o3o3x3o4o - bersa, o3o3o3o3o3x4o - rasa
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |