Misplaced Pages

Isotopes of caesium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Caesium-134)

Isotopes of caesium (55Cs)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Cs synth 9.7 d ε Xe
Cs 100% stable
Cs synth 2.0648 y ε Xe
β Ba
Cs trace 1.33×10 y β Ba
Cs synth 30.17 y β Ba
Standard atomic weight Ar°(Cs)
  • 132.90545196±0.00000006
  • 132.91±0.01 (abridged)

Caesium (55Cs) has 41 known isotopes, the atomic masses of these isotopes range from 112 to 152. Only one isotope, Cs, is stable. The longest-lived radioisotopes are Cs with a half-life of 1.33 million years,
Cs
with a half-life of 30.1671 years and Cs with a half-life of 2.0652 years. All other isotopes have half-lives less than 2 weeks, most under an hour.

Beginning in 1945 with the commencement of nuclear testing, caesium radioisotopes were released into the atmosphere where caesium is absorbed readily into solution and is returned to the surface of the Earth as a component of radioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function of these isotopes can be estimated as a function of time.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Cs 55 57 111.95017(12)# 490(30) μs p (>99.74%) Xe 1+#
α (<0.26%) I
Cs 55 58 112.9444285(92) 16.94(9) μs p Xe (3/2+)
Cs 55 59 113.941292(91) 570(20) ms β (91.1%) Xe (1+)
β, p (8.7%) I
β, α (0.19%) Te
α (0.018%) I
Cs 55 60 114.93591(11)# 1.4(8) s β (99.93%) Xe 9/2+#
β, p (0.07%) I
Cs 55 61 115.93340(11)# 700(40) ms β (99.67%) Xe (1+)
β, p (0.28%) I
β, α (0.049%) Te
Cs 100(60)# keV 3.85(13) s β (99.56%) Xe (7+)
β, p (0.44%) I
β, α (0.0034%) Te
Cs 55 62 116.928617(67) 8.4(6) s β Xe 9/2+#
Cs 150(80)# keV 6.5(4) s β Xe 3/2+#
Cs 55 63 117.926560(14) 14(2) s β (99.98%) Xe 2+
β, p (0.021%) I
β, α (0.0012%) Te
Cs 100(60)# keV 17(3) s β (99.98%) Xe (7−)
β, p (0.021%) I
β, α (0.0012%) Te
Cs 55 64 118.9223 77(15) 43.0(2) s β Xe 9/2+
β, α (<2×10%) Te
Cs 50(30)# keV 30.4(1) s β Xe 3/2+
Cs 55 65 119.920677(11) 60.4(6) s β Xe 2+
β, α (<2×10%) Te
β, p (<7×10%) I
Cs 100(60)# keV 57(6) s β Xe (7−)
β, α (<2×10%) Te
β, p (<7×10%) I
Cs 55 66 120.917227(15) 155(4) s β Xe 3/2+
Cs 68.5(3) keV 122(3) s β (83%) Xe 9/2+
IT (17%) Cs
Cs 55 67 121.916108(36) 21.18(19) s β Xe 1+
β, α (<2×10%) Te
Cs 45.87(12) keV >1 μs IT Cs 3+
Cs 140(30) keV 3.70(11) min β Xe 8−
Cs 127.07(16) keV 360(20) ms IT Cs 5−
Cs 55 68 122.912996(13) 5.88(3) min β Xe 1/2+
Cs 156.27(5) keV 1.64(12) s IT Cs 11/2−
Cs 252(6) keV 114(5) ns IT Cs (9/2+)
Cs 55 69 123.9122474(98) 30.9(4) s β Xe 1+
Cs 462.63(14) keV 6.41(7) s IT (99.89%) Cs (7)+
β (0.11%) Xe
Cs 55 70 124.9097260(83) 44.35(29) min β Xe 1/2+
Cs 266.1(11) keV 900(30) ms IT Cs (11/2−)
Cs 55 71 125.909446(11) 1.64(2) min β Xe 1+
Cs 273.0(7) keV ~1 μs IT Cs (4−)
Cs 596.1(11) keV 171(14) μs IT Cs 8−#
Cs 55 72 126.9074175(60) 6.25(10) h β Xe 1/2+
Cs 452.23(21) keV 55(3) μs IT Cs (11/2)−
Cs 55 73 127.9077485(57) 3.640(14) min β Xe 1+
Cs 55 74 128.9060659(49) 32.06(6) h β Xe 1/2+
Cs 575.40(14) keV 718(21) ns IT Cs (11/2−)
Cs 55 75 129.9067093(90) 29.21(4) min β (98.4%) Xe 1+
β (1.6%) Ba
Cs 163.25(11) keV 3.46(6) min IT (99.84%) Cs 5−
β (0.16%) Xe
Cs 55 76 130.90546846(19) 9.689(16) d EC Xe 5/2+
Cs 55 77 131.9064378(11) 6.480(6) d β (98.13%) Xe 2+
β (1.87%) Ba
Cs 55 78 132.905451958(8) Stable 7/2+ 1.0000
Cs 55 79 133.906718501(17) 2.0650(4) y β Ba 4+
EC (3.0×10%) Xe
Cs 138.7441(26) keV 2.912(2) h IT Cs 8−
Cs 55 80 134.90597691(39) 1.33(19)×10 y β Ba 7/2+
Cs 1632.9(15) keV 53(2) min IT Cs 19/2−
Cs 55 81 135.9073114(20) 13.01(5) d β Ba 5+
Cs 517.9(1) keV 17.5(2) s β? Ba 8−
IT? Cs
Cs 55 82 136.90708930(32) 30.04(4) y β (94.70%) Ba 7/2+
β (5.30%) Ba
Cs 55 83 137.9110171(98) 33.5(2) min β Ba 3−
Cs 79.9(3) keV 2.91(10) min IT (81%) Cs 6−
β (19%) Ba
Cs 55 84 138.9133638(34) 9.27(5) min β Ba 7/2+
Cs 55 85 139.9172837(88) 63.7(3) s β Ba 1−
Cs 13.931(21) keV 471(51) ns IT Cs (2)−
Cs 55 86 140.9200453(99) 24.84(16) s β (99.97%) Ba 7/2+
β, n (0.0342%) Ba
Cs 55 87 141.9242995(76) 1.687(10) s β (99.91%) Ba 0−
β, n (0.089%) Ba
Cs 55 88 142.9273473(81) 1.802(8) s β (98.38%) Ba 3/2+
β, n (1.62%) Ba
Cs 55 89 143.932075(22) 994(6) ms β (97.02%) Ba 1−
β, n (2.98%) Ba
Cs 92.2(5) keV 1.1(1) μs IT Cs (4−)
Cs 55 90 144.9355289(97) 582(4) ms β (87.2%) Ba 3/2+
β, n (12.8%) Ba
Cs 762.9(4) keV 0.5(1) μs IT Cs 13/2#
Cs 55 91 145.9406219(31) 321.6(9) ms β (85.8%) Ba 1−
β, n (14.2%) Ba
Cs 46.7(1) keV 1.25(5) μs IT Cs 4−#
Cs 55 92 146.9442615(90) 230.5(9) ms β (71.5%) Ba (3/2+)
β, n (28.5%) Ba
Cs 701.4(4) keV 190(20) ns IT Cs 13/2#
Cs 55 93 147.949639(14) 151.8(10) ms β (71.3%) Ba (2−)
β, n (28.7%) Ba
Cs 45.2(1) keV 4.8(2) μs IT Cs 4−#
Cs 55 94 148.95352(43)# 112.3(25) ms β (75%) Ba 3/2+#
β, n (25%) Ba
Cs 55 95 149.95902(43)# 81.0(26) ms β (~56%) Ba (2−)
β, n (~44%) Ba
Cs 55 96 150.96320(54)# 59(19) ms β Ba 3/2+#
This table header & footer:
  1. Cs – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^ Order of ground state and isomer is uncertain.
  10. Used to define the second
  11. ^ Fission product

Caesium-131

Caesium-131, introduced in 2004 for brachytherapy by Isoray, has a half-life of 9.7 days and 30.4 keV energy.

Caesium-133

Caesium-133 is the only stable isotope of caesium. The SI base unit of time, the second, is defined by a specific caesium-133 transition. Since 1967, the official definition of a second is:

The second, symbol s, is defined by taking the fixed numerical value of the caesium frequency, ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 Hz, which is equal to s.

Caesium-134

Caesium-134 has a half-life of 2.0652 years. It is produced both directly (at a very small yield because Xe is stable) as a fission product and via neutron capture from nonradioactive Cs (neutron capture cross section 29 barns), which is a common fission product. Caesium-134 is not produced via beta decay of other fission product nuclides of mass 134 since beta decay stops at stable Xe. It is also not produced by nuclear weapons because Cs is created by beta decay of original fission products only long after the nuclear explosion is over.

The combined yield of Cs and Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation. Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive Cs.

Caesium-134 undergoes beta decay (β), producing Ba directly and emitting on average 2.23 gamma ray photons (mean energy 0.698 MeV).

Caesium-135

Long-lived fission products
Nuclide t1⁄2 Yield Q βγ
(Ma) (%) (keV)
Tc 0.211 6.1385 294 β
Sn 0.230 0.1084 4050 βγ
Se 0.327 0.0447 151 β
Cs 1.33  6.9110 269 β
Zr 1.53  5.4575 91 βγ
Pd 6.5   1.2499 33 β
I 16.14   0.8410 194 βγ
  1. Decay energy is split among β, neutrino, and γ if any.
  2. Per 65 thermal neutron fissions of U and 35 of Pu.
  3. Has decay energy 380 keV, but its decay product Sb has decay energy 3.67 MeV.
  4. Lower in thermal reactors because Xe, its predecessor, readily absorbs neutrons.

Caesium-135 is a mildly radioactive isotope of caesium with a half-life of 1.33 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the seven long-lived fission products and the only alkaline one. In most types of nuclear reprocessing, it stays with the medium-lived fission products (including
Cs which can only be separated from
Cs via isotope separation) rather than with other long-lived fission products. Except in the Molten salt reactor, where
Cs is created as a completely separate stream outside the fuel (after the decay of bubble-separated
Cs). The low decay energy, lack of gamma radiation, and long half-life of Cs make this isotope much less hazardous than Cs or Cs.

Its precursor Xe has a high fission product yield (e.g., 6.3333% for U and thermal neutrons) but also has the highest known thermal neutron capture cross section of any nuclide. Because of this, much of the Xe produced in current thermal reactors (as much as >90% at steady-state full power) will be converted to extremely long-lived (half-life on the order of 10 years)
Xe
before it can decay to
Cs despite the relatively short half life of
Xe. Little or no
Xe will be destroyed by neutron capture after a reactor shutdown, or in a molten salt reactor that continuously removes xenon from its fuel, a fast neutron reactor, or a nuclear weapon. The xenon pit is a phenomenon of excess neutron absorption through
Xe buildup in the reactor after a reduction in power or a shutdown and is often managed by letting the
Xe decay away to a level at which neutron flux can be safely controlled via control rods again.

A nuclear reactor will also produce much smaller amounts of Cs from the nonradioactive fission product Cs by successive neutron capture to Cs and then Cs.

The thermal neutron capture cross section and resonance integral of Cs are 8.3 ± 0.3 and 38.1 ± 2.6 barns respectively. Disposal of Cs by nuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more Cs from stable Cs. In addition, the intense medium-term radioactivity of Cs makes handling of nuclear waste difficult.

Caesium-136

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2024) (Learn how and when to remove this message)

Caesium-136 has a half-life of 13.16 days. It is produced both directly (at a very small yield because Xe is beta-stable) as a fission product and via neutron capture from long-lived Cs (neutron capture cross section 8.702 barns), which is a common fission product. Caesium-136 is not produced via beta decay of other fission product nuclides of mass 136 since beta decay stops at almost-stable Xe. It is also not produced by nuclear weapons because Cs is created by beta decay of original fission products only long after the nuclear explosion is over. Cs also captures neutrons with a cross section of 13.00 barns, becoming medium-lived radioactive Cs. Caesium-136 undergoes beta decay (β−), producing Ba directly.

Caesium-137

Main article: Caesium-137

Caesium-137, with a half-life of 30.17 years, is one of the two principal medium-lived fission products, along with Sr, which are responsible for most of the radioactivity of spent nuclear fuel after several years of cooling, up to several hundred years after use. It constitutes most of the radioactivity still left from the Chernobyl accident and is a major health concern for decontaminating land near the Fukushima nuclear power plant. Cs beta decays to barium-137m (a short-lived nuclear isomer) then to nonradioactive barium-137. Caesium-137 does not emit gamma radiation directly, all observed radiation is due to the daughter isotope barium-137m.

Cs has a very low rate of neutron capture and cannot yet be feasibly disposed of in this way unless advances in neutron beam collimation (not otherwise achievable by magnetic fields), uniquely available only from within muon catalyzed fusion experiments (not in the other forms of Accelerator Transmutation of Nuclear Waste) enables production of neutrons at high enough intensity to offset and overcome these low capture rates; until then, therefore, Cs must simply be allowed to decay.

Cs has been used as a tracer in hydrologic studies, analogous to the use of H.

Other isotopes of caesium

The other isotopes have half-lives from a few days to fractions of a second. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing through isotopes of iodine then isotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium is often created far from the original site of fission.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "NIST Radionuclide Half-Life Measurements". NIST. Retrieved 2011-03-13.
  3. "Standard Atomic Weights: Caesium". CIAAW. 2013.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Browne, E.; Tuli, J.K. (October 2007). "Nuclear Data Sheets for A = 137". Nuclear Data Sheets. 108 (10): 2173–2318. doi:10.1016/j.nds.2007.09.002.
  7. Isoray. "Why Cesium-131". Archived from the original on 2019-06-30. Retrieved 2017-12-05.
  8. Although the phase used here is more terse than in the previous definition, it still has the same meaning. This is made clear in the 9th SI Brochure, which almost immediately after the definition on p. 130 states: "The effect of this definition is that the second is equal to the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the unperturbed ground state of the Cs atom."
  9. "Characteristics of Caesium-134 and Caesium-137". Japan Atomic Energy Agency. Archived from the original on 2016-03-04. Retrieved 2014-10-23.
  10. John L. Groh (2004). "Supplement to Chapter 11 of Reactor Physics Fundamentals" (PDF). CANTEACH project. Archived from the original (PDF) on 10 June 2011. Retrieved 14 May 2011.
  11. Hatsukawa, Y.; Shinohara, N; Hata, K.; et al. (1999). "Thermal neutron cross section and resonance integral of the reaction of135Cs(n,γ)136Cs: Fundamental data for the transmutation of nuclear waste". Journal of Radioanalytical and Nuclear Chemistry. 239 (3): 455–458. doi:10.1007/BF02349050. S2CID 97425651.
  12. Ohki, Shigeo; Takaki, Naoyuki (2002). "Transmutation of Cesium-135 With Fast Reactors" (PDF). Proceedings of the Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning & Transmutation, Cheju, Korea.
  13. Dennis (1 March 2013). "Cooling a Hot Zone". Science. 339 (6123): 1028–1029. doi:10.1126/science.339.6123.1028. PMID 23449572.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: