Misplaced Pages

Isotopes of carbon

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Carbon-9)

"Carbon-15" redirects here. For the firearm, see Carbon 15.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of carbon" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message)
Isotopes of carbon (6C)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
C synth 20.34 min β B
C 98.9% stable
C 1.06% stable
C 1 ppt (1⁄10) 5.70×10 y β N
Standard atomic weight Ar°(C)

Carbon (6C) has 14 known isotopes, from
C
to
C
as well as
C
, of which
C
and
C
are stable. The longest-lived radioisotope is
C
, with a half-life of 5.70(3)×10 years. This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reaction
N
+
n

C
+
H
. The most stable artificial radioisotope is
C
, which has a half-life of 20.3402(53) min. All other radioisotopes have half-lives under 20 seconds, most less than 200 milliseconds. The least stable isotope is
C
, with a half-life of 3.5(1.4)×10 s. Light isotopes tend to decay into isotopes of boron and heavy ones tend to decay into isotopes of nitrogen.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life

Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Normal proportion Range of variation

C
6 2 8.037643(20) 3.5(1.4) zs
2p
Be
0+

C
6 3 9.0310372(23) 126.5(9) ms β (54.1(1.7)%)
B
3/2−
βα (38.4(1.6)%)
Li
βp (7.5(6)%)
Be

C
6 4 10.01685322(8) 19.3011(15) s β
B
0+

C
6 5 11.01143260(6) 20.3402(53) min β
B
3/2−

C
12160(40) keV p ?
B
 ?
1/2+

C
6 6 12 exactly Stable 0+

C
6 7 13.003354835336(252) Stable 1/2−

C
6 8 14.003241989(4) 5.70(3)×10 y β
N
0+ Trace < 10

C
22100(100) keV IT
C
(2−)

C
6 9 15.0105993(9) 2.449(5) s β
N
1/2+

C
6 10 16.014701(4) 750(6) ms βn (99.0(3)%)
N
0+
β (1.0(3)%)
N

C
6 11 17.022579(19) 193(6) ms β (71.6(1.3)%)
N
3/2+
βn (28.4(1.3)%)
N
β2n ?
N
 ?

C
6 12 18.02675(3) 92(2) ms β (68.5(1.5)%)
N
0+
βn (31.5(1.5)%)
N
β2n ?
N
 ?

C
6 13 19.03480(11) 46.2(2.3) ms βn (47(3)%)
N
1/2+
β (46.0(4.2)%)
N
β2n (7(3)%)
N

C
6 14 20.04026(25) 16(3) ms βn (70(11)%)
N
0+
β2n (< 18.6%)
N
β (> 11.4%)
N

C
6 16 22.05755(25) 6.2(1.3) ms βn (61(14)%)
N
0+
β2n (< 37%)
N
β (> 2%)
N
This table header & footer:
  1. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. Modes of decay:
    EC: Electron capture


    n: Neutron emission
    p: Proton emission
  3. Bold symbol as daughter – Daughter product is stable.
  4. ( ) spin value – Indicates spin with weak assignment arguments.
  5. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Subsequently decays by double proton emission to
    He
    for a net reaction of
    C

    He
    + 4
    H
  7. Immediately decays by proton emission to
    He
    for a net reaction of
    C
    → 2 
    He
    +
    H
    +
    e
  8. Immediately decays into two
    He
    atoms for a net reaction of
    C
    → 2 
    He
    +
    H
    +
    e
  9. Used for labeling molecules in PET scans
  10. ^ Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.
  11. The unified atomic mass unit is defined as 1/12 of the mass of an unbound atom of carbon-12 in its ground state.
  12. Ratio of C to C used to measure biological productivity in ancient times and differing types of photosynthesis
  13. Has an important use in radiodating (see carbon dating)
  14. Primarily cosmogenic, produced by neutrons striking atoms of
    N
    (
    N
    +
    n

    C
    +
    H
    )
  15. Has 1 halo neutron
  16. Has 2 halo neutrons

Carbon-11

Carbon-11 or
C
is a radioactive isotope of carbon that decays to boron-11. This decay mainly occurs due to positron emission, with around 0.19–0.23% of decays instead occurring by electron capture. It has a half-life of 20.3402(53) min.


C

B
+
e
+
ν
e
+ 0.96 MeV

C
+
e

B
+
ν
e + 1.98 MeV

It is produced by hitting nitrogen with protons of around 16.5 MeV in a cyclotron. The causes the endothermic reaction


N
+
p

C
+
He
− 2.92 MeV

It can also be produced by fragmentation of
C
by shooting high-energy
C
at a target.

Carbon-11 is commonly used as a radioisotope for the radioactive labeling of molecules in positron emission tomography. Among the many molecules used in this context are the radioligands DASB and Cimbi-5.

Natural isotopes

Main articles: Carbon-12, Carbon-13, and Carbon-14

There are three naturally occurring isotopes of carbon: 12, 13, and 14.
C
and
C
are stable, occurring in a natural proportion of approximately 93:1.
C
is produced by thermal neutrons from cosmic radiation in the upper atmosphere, and is transported down to earth to be absorbed by living biological material. Isotopically,
C
constitutes a negligible part; but, since it is radioactive with a half-life of 5.70(3)×10 years, it is radiometrically detectable. Since dead tissue does not absorb
C
, the amount of
C
is one of the methods used within the field of archeology for radiometric dating of biological material.

Paleoclimate


C
and
C
are measured as the isotope ratio δC in benthic foraminifera and used as a proxy for nutrient cycling and the temperature dependent air–sea exchange of CO2 (ventilation). Plants find it easier to use the lighter isotopes (
C
) when they convert sunlight and carbon dioxide into food. For example, large blooms of plankton (free-floating organisms) absorb large amounts of
C
from the oceans. Originally, the
C
was mostly incorporated into the seawater from the atmosphere. If the oceans that the plankton live in are stratified (meaning that there are layers of warm water near the top, and colder water deeper down), then the surface water does not mix very much with the deeper waters, so that when the plankton dies, it sinks and takes away
C
from the surface, leaving the surface layers relatively rich in
C
. Where cold waters well up from the depths (such as in the North Atlantic), the water carries
C
back up with it; when the ocean was less stratified than today, there was much more
C
in the skeletons of surface-dwelling species. Other indicators of past climate include the presence of tropical species and coral growth rings.

Tracing food sources and diets

The quantities of the different isotopes can be measured by mass spectrometry and compared to a standard; the result (e.g., the delta of the
C
= δ
C
) is expressed as parts per thousand (‰) divergence from the ratio of a standard:

δ C 13 = ( ( C 13 C 12 ) sample ( C 13 C 12 ) standard 1 ) × 1000 {\displaystyle \delta {\ce {^{13}C}}=\left({\frac {\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{sample}}}{\left({\frac {{\ce {^{13}C}}}{{\ce {^{12}C}}}}\right)_{\text{standard}}}}-1\right)\times 1000}

The usual standard is Peedee Belemnite, abbreviated "PDB", a fossil belemnite. Due to shortage of the original PDB sample, artificial "virtual PDB", or "VPDB", is generally used today.

Stable carbon isotopes in carbon dioxide are utilized differentially by plants during photosynthesis. Grasses in temperate climates (barley, rice, wheat, rye, and oats, plus sunflower, potato, tomatoes, peanuts, cotton, sugar beet, and most trees and their nuts or fruits, roses, and Kentucky bluegrass) follow a C3 photosynthetic pathway that will yield δC values averaging about −26.5‰. Grasses in hot arid climates (maize in particular, but also millet, sorghum, sugar cane, and crabgrass) follow a C4 photosynthetic pathway that produces δC values averaging about −12.5‰.

It follows that eating these different plants will affect the δC values in the consumer's body tissues. If an animal (or human) eats only C3 plants, their δC values will be from −18.5 to −22.0‰ in their bone collagen and −14.5‰ in the hydroxylapatite of their teeth and bones.

In contrast, C4 feeders will have bone collagen with a value of −7.5‰ and hydroxylapatite value of −0.5‰.

In actual case studies, millet and maize eaters can easily be distinguished from rice and wheat eaters. Studying how these dietary preferences are distributed geographically through time can illuminate migration paths of people and dispersal paths of different agricultural crops. However, human groups have often mixed C3 and C4 plants (northern Chinese historically subsisted on wheat and millet), or mixed plant and animal groups together (for example, southeastern Chinese subsisting on rice and fish).

See also

References

  1. "Standard Atomic Weights: Carbon". CIAAW. 2009.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  5. ^ "Atomic Weight of Carbon". CIAAW.
  6. Scobie, J.; Lewis, G. M. (1 September 1957). "K-capture in carbon 11". Philosophical Magazine. 2 (21): 1089–1099. Bibcode:1957PMag....2.1089S. doi:10.1080/14786435708242737.
  7. Campbell, J. L.; Leiper, W.; Ledingham, K. W. D.; Drever, R. W. P. (1967-04-11). "The ratio of K-capture to positron emission in the decay of C". Nuclear Physics A. 96 (2): 279–287. Bibcode:1967NuPhA..96..279C. doi:10.1016/0375-9474(67)90712-9.
  8. "Carbon-11 Production and Transformation". Scholarly Community Encyclopedia.
  9. Lu, Shuiyu; et al. (Jan 18, 2024). "Gas Phase Transformations in Carbon-11 Chemistry". Int. J. Mol. Sci. 25 (2): 1167. doi:10.3390/ijms25021167. PMC 10816134. PMID 38256240.
  10. Daria Boscolo; et al. (Sep 2024). "First image-guided treatment of a mouse tumor with radioactive ion beams". arXiv:2409.14898.
  11. Lynch-Stieglitz, Jean; Stocker, Thomas F.; Broecker, Wallace S.; Fairbanks, Richard G. (1995). "The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling". Global Biogeochemical Cycles. 9 (4): 653–665. Bibcode:1995GBioC...9..653L. doi:10.1029/95GB02574. S2CID 129194624.
  12. Tim Flannery The weather makers: the history & future of climate change, The Text Publishing Company, Melbourne, Australia. ISBN 1-920885-84-6
  13. Miller, Charles B.; Wheeler, Patricia (2012). Biological oceanography (2nd ed.). Chichester, West Sussex: John Wiley & Sons, Ltd. p. 186. ISBN 9781444333022. OCLC 794619582.
  14. Faure, Gunter; Mensing, Teresa M. (2005). "27 Carbon". Isotopes: Principles and Applications (Third ed.). Hoboken, NJ: Wiley. ISBN 978-81-265-3837-9.
  15. O'Leary, Marion H. (May 1988). "Carbon Isotopes in Photosynthesis" (PDF). BioScience. 38 (5): 328–336. doi:10.2307/1310735. JSTOR 1310735. S2CID 29110460. Retrieved 17 November 2022.
  16. Tycot, R. H. (2004). M. Martini; M. Milazzo; M. Piacentini (eds.). "Stable isotopes and diet: you are what you eat" (PDF). Proceedings of the International School of Physics "Enrico Fermi" Course CLIV.
  17. Richard, Hedges (2006). "Where does our protein come from?". British Journal of Nutrition. 95 (6): 1031–2. doi:10.1079/bjn20061782. PMID 16768822.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: