Misplaced Pages

Isotopes of copper

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Copper-58)

Isotopes of copper (29Cu)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Cu 69.2% stable
Cu synth 12.70 h β Ni
β Zn
Cu 30.9% stable
Cu synth 61.83 h β Zn
Standard atomic weight Ar°(Cu)

Copper (29Cu) has two stable isotopes, Cu and Cu, along with 28 radioisotopes. The most stable radioisotope is Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β decay, while isotopes with atomic masses above 65 tend to undergo β decay. Cu decays by both β and β.

There are at least 10 metastable isomers of copper, including two each for Cu and Cu. The most stable of these is Cu with a half-life of 3.75 minutes. The least stable is Cu with a half-life of 149 ns.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Cu 29 26 54.96604(17) 55.9(15) ms β Ni 3/2−#
β, p (?%) Co
Cu 29 27 55.9585293(69) 80.8(6) ms β (99.60%) Ni (4+)
β, p (0.40%) Co
Cu 29 28 56.94921169(54) 196.4(7) ms β Ni 3/2−
Cu 29 29 57.94453228(60) 3.204(7) s β Ni 1+
Cu 29 30 58.93949671(57) 81.5(5) s β Ni 3/2−
Cu 29 31 59.9373638(17) 23.7(4) min β Ni 2+
Cu 29 32 60.9334574(10) 3.343(16) h β Ni 3/2−
Cu 29 33 61.9325948(07) 9.672(8) m β Ni 1+
Cu 29 34 62.92959712(46) Stable 3/2− 0.6915(15)
Cu 29 35 63.92976400(46) 12.7004(13) h β (61.52%) Ni 1+
β (38.48%) Zn
Cu 29 36 64.92778948(69) Stable 3/2− 0.3085(15)
Cu 29 37 65.92886880(70) 5.120(14) min β Zn 1+
Cu 1154.2(14) keV 600(17) ns IT Cu (6)−
Cu 29 38 66.92772949(96) 61.83(12) h β Zn 3/2−
Cu 29 39 67.9296109(17) 30.9(6) s β Zn 1+
Cu 721.26(8) keV 3.75(5) min IT (86%) Cu 6−
β (14%) Zn
Cu 29 40 68.929429267(15) 2.85(15) min β Zn 3/2−
Cu 2742.0(7) keV 357(2) ns IT Cu (13/2+)
Cu 29 41 69.9323921(12) 44.5(2) s β Zn 6−
Cu 101.1(3) keV 33(2) s β (52%) Zn 3−
IT (48%) Cu
Cu 242.6(5) keV 6.6(2) s β (93.2%) Zn 1+
IT (6.8%) Cu
Cu 29 42 70.9326768(16) 19.4(14) s β Zn 3/2−
Cu 2755.7(6) keV 271(13) ns IT Cu (19/2−)
Cu 29 43 71.9358203(15) 6.63(3) s β Zn 2−
Cu 270(3) keV 1.76(3) μs IT Cu (6−)
Cu 29 44 72.9366744(21) 4.20(12) s β (99.71%) Zn 3/2−
β, n (0.29%) Zn
Cu 29 45 73.9398749(66) 1.606(9) s β (99.93%) Zn 2−
β, n (0.075%) Zn
Cu 29 46 74.94152382(77) 1.224(3) s β (97.3%) Zn 5/2−
β, n (2.7%) Zn
Cu 61.7(4) keV 0.310(8) μs IT Cu 1/2−
Cu 66.2(4) keV 0.149(5) μs IT Cu 3/2−
Cu 29 47 75.9452370(21) 1.27(30) s β (?%) Zn (1,2)
β, n (?%) Zn
Cu 64.8(25) keV 637.7(55) ms β (?%) Zn 3−
β, n (?%) Zn
IT (10–17%) Cu
Cu 29 48 76.9475436(13) 470.3(17) ms β (69.9%) Zn 5/2−
β, n (30.1%) Zn
Cu 29 49 77.9519206(81) 330.7(20) ms β, n (50.6%) Zn (6−)
β (49.4%) Zn
Cu 29 50 78.95447(11) 241.3(21) ms β, n (66%) Zn (5/2−)
β (34%) Zn
Cu 29 51 79.96062(32)# 113.3(64) ms β, n (59%) Zn
β (41%) Zn
Cu 29 52 80.96574(32)# 73.2(68) ms β, n (81%) Zn 5/2−#
β (19%) Zn
Cu 29 53 81.97238(43)# 34(7) ms β Zn
Cu 29 54 82.97811(54)# 21# ms 5/2−#
Cu 29 55 83.98527(54)#
This table header & footer:
  1. Cu – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold symbol as daughter – Daughter product is stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Copper nuclear magnetic resonance

Both stable isotopes of copper (Cu and Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. Cu is the more sensitive nucleus while Cu yields very slightly narrower signals. Usually though Cu NMR is preferred.

Medical applications

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of Cu, Cu, Cu, and Cu for diagnostic purposes and Cu and Cu for targeted radiotherapy. For example, Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Copper". CIAAW. 1969.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853: 138663. arXiv:2401.14018. doi:10.1016/j.physletb.2024.138663.
  6. Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833: 137309. doi:10.1016/j.physletb.2022.137309.
  7. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  8. "(Cu) Copper NMR".
  9. Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: