Misplaced Pages

Coulson–Fischer theory

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Electronic structure methods
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method

In theoretical chemistry and molecular physics, Coulson–Fischer theory provides a quantum mechanical description of the electronic structure of molecules. The 1949 seminal work of Coulson and Fischer established a theory of molecular electronic structure which combines the strengths of the two rival theories which emerged soon after the advent of quantum chemistry - valence bond theory and molecular orbital theory, whilst avoiding many of their weaknesses. For example, unlike the widely used Hartree–Fock molecular orbital method, Coulson–Fischer theory provides a qualitatively correct description of molecular dissociative processes. The Coulson–Fischer wave function has been said to provide a third way in quantum chemistry. Modern valence bond theory is often seen as an extension of the Coulson–Fischer method.

Theory

Coulson–Fischer theory is an extension of modern valence bond theory that uses localized atomic orbitals as the basis for VBT structures. In Coulson-Fischer Theory, orbitals are delocalized towards nearby atoms. This is described for H2 as follows:

ϕ 1 = a + λ b {\displaystyle \phi _{1}=a+\lambda b}
ϕ 2 = b + λ a {\displaystyle \phi _{2}=b+\lambda a}

where a and b are atomic 1s orbitals, that are used as the basis functions for VBT, and λ is a delocalization parameter from 0 to 1. The VB structures then use ϕ 1 {\displaystyle \phi _{1}} and ϕ 2 {\displaystyle \phi _{2}} as the basis functions to describe the total electronic wavefunction as

Φ C F = | ϕ 1 ϕ 2 ¯ | | ϕ 1 ¯ ϕ 2 | {\displaystyle \Phi _{CF}=\left\vert \phi _{1}{\overline {\phi _{2}}}\right\vert -\left\vert {\overline {\phi _{1}}}\phi _{2}\right\vert }

in obvious analogy to the Heitler-London wavefunction. However, an expansion of the Coulson-Fischer description of the wavefunction in terms of a and b gives:

Φ C F = ( 1 + λ 2 ) ( | a b ¯ | | a ¯ b | ) + ( 2 λ ) ( | a a ¯ | | b b ¯ | ) {\displaystyle \Phi _{CF}=(1+\lambda ^{2})(\left\vert a{\overline {b}}\right\vert -\left\vert {\overline {a}}b\right\vert )+(2\lambda )(\left\vert a{\overline {a}}\right\vert -\left\vert b{\overline {b}}\right\vert )}

A full VBT description of H2 that includes both ionic and covalent contributions is

Φ V B T = ϵ ( | a b ¯ | | a ¯ b | ) + μ ( | a a ¯ | | b b ¯ | ) {\displaystyle \Phi _{VBT}=\epsilon (\left\vert a{\overline {b}}\right\vert -\left\vert {\overline {a}}b\right\vert )+\mu (\left\vert a{\overline {a}}\right\vert -\left\vert b{\overline {b}}\right\vert )}

where ε and μ are constants between 0 and 1.

As a result, the CF description gives the same description as a full valence bond description, but with just one VB structure.

References

  1. ^ C.A. Coulson and I. Fischer, Notes on the Molecular Orbital Treatment of the Hydrogen Molecule, Phil. Mag. 40, 386 (1949)
  2. S. Wilson and J. Gerratt, Calculation of potential energy curves for the ground state of the hydrogen molecule, Molec. Phys. 30, 777 (1975) https://doi.org/10.1080/14786444908521726
  3. S. Wilson, On the Wave Function of Coulson and Fischer: A Third Way in Quantum Chemistry, in Advances in the Theory of Atomic and Molecular Systems, ed. P. Piecuch, J. Maruani, G. Delgado-Barrio and S. Wilson, Progress in Theoretical Chemistry and Physics 19, Springer (2009)
  4. ^ Shaik, Sason; Hiberty, Philippe C. (2007-11-16). A Chemist's Guide to Valence Bond Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9780470192597. ISBN 978-0-470-19259-7.
  5. "Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455-472. - References - Scientific Research Publishing"

External links


Stub icon

This article about theoretical chemistry is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This quantum chemistry-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This molecular physics–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: