Misplaced Pages

Caesium chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from CsCl) "CsCl" redirects here. For other uses, see CSCL.
Caesium chloride
Names
IUPAC name Caesium chloride
Other names Cesium chloride
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.728 Edit this at Wikidata
EC Number
  • 231-600-2
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/ClH.Cs/h1H;/q;+1/p-1Key: AIYUHDOJVYHVIT-UHFFFAOYSA-M
  • InChI=1/ClH.Cs/h1H;/q;+1/p-1Key: AIYUHDOJVYHWHXWOFAO
SMILES
  • .
Properties
Chemical formula CsCl
Molar mass 168.36 g/mol
Appearance white solid
hygroscopic
Density 3.988 g/cm
Melting point 646 °C (1,195 °F; 919 K)
Boiling point 1,297 °C (2,367 °F; 1,570 K)
Solubility in water 1910 g/L (25 °C)
Solubility soluble in ethanol
Band gap 8.35 eV (80 K)
Magnetic susceptibility (χ) -56.7·10 cm/mol
Refractive index (nD) 1.712 (0.3 μm)
1.640 (0.59 μm)
1.631 (0.75 μm)
1.626 (1 μm)
1.616 (5 μm)
1.563 (20 μm)
Structure
Crystal structure CsCl, cP2
Space group Pm3m, No. 221
Lattice constant a = 0.4119 nm
Lattice volume (V) 0.0699 nm
Formula units (Z) 1
Coordination geometry Cubic (Cs)
Cubic (Cl)
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS08: Health hazard
Signal word Warning
Hazard statements H302, H341, H361, H373
Precautionary statements P201, P202, P260, P264, P270, P281, P301+P312, P308+P313, P314, P330, P405, P501
Lethal dose or concentration (LD, LC):
LD50 (median dose) 2600 mg/kg (oral, rat)
Related compounds
Other anions Caesium fluoride
Caesium bromide
Caesium iodide
Caesium astatide
Other cations Lithium chloride
Sodium chloride
Potassium chloride
Rubidium chloride
Francium chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Caesium chloride or cesium chloride is the inorganic compound with the formula CsCl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in carnallite (up to 0.002%), sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

Caesium chloride is widely used in isopycnic centrifugation for separating various types of DNA. It is a reagent in analytical chemistry, where it is used to identify ions by the color and morphology of the precipitate. When enriched in radioisotopes, such as CsCl or CsCl, caesium chloride is used in nuclear medicine applications such as treatment of cancer and diagnosis of myocardial infarction. Another form of cancer treatment was studied using conventional non-radioactive CsCl. Whereas conventional caesium chloride has a rather low toxicity to humans and animals, the radioactive form easily contaminates the environment due to the high solubility of CsCl in water. Spread of CsCl powder from a 93-gram container in 1987 in Goiânia, Brazil, resulted in one of the worst-ever radiation spill accidents killing four and directly affecting 249 people.

Crystal structure

Main article: Cubic crystal system

The caesium chloride structure adopts a primitive cubic lattice with a two-atom basis, where both atoms have eightfold coordination. The chloride atoms lie upon the lattice points at the corners of the cube, while the caesium atoms lie in the holes in the center of the cubes; an alternative and exactly equivalent 'setting' has the caesium ions at the corners and the chloride ion in the center. This structure is shared with CsBr and CsI and many binary metallic alloys. In contrast, the other alkaline halides have the sodium chloride (rocksalt) structure. When both ions are similar in size (Cs ionic radius 174 pm for this coordination number, Cl 181 pm) the CsCl structure is adopted, when they are different (Na ionic radius 102 pm, Cl 181 pm) the sodium chloride structure is adopted. Upon heating to above 445 °C, the normal caesium chloride structure (α-CsCl) converts to the β-CsCl form with the rocksalt structure (space group Fm3m). The rocksalt structure is also observed at ambient conditions in nanometer-thin CsCl films grown on mica, LiF, KBr and NaCl substrates.


Physical properties

Caesium chloride is colorless in the form of large crystals and white when powdered. It readily dissolves in water with the maximum solubility increasing from 1865 g/L at 20 °C to 2705 g/L at 100 °C. The crystals are very hygroscopic and gradually disintegrate at ambient conditions. Caesium chloride does not form hydrates.

Solubility of CsCl in water
Т (°C) 0 10 20 25 30 40 50 60 70 80 90 100
S (wt%) 61.83 63.48 64.96 65.64 66.29 67.50 68.60 69.61 70.54 71.40 72.21 72.96

In contrast to sodium chloride and potassium chloride, caesium chloride readily dissolves in concentrated hydrochloric acid. Caesium chloride has also a relatively high solubility in formic acid (1077 g/L at 18 °C) and hydrazine; medium solubility in methanol (31.7 g/L at 25 °C) and low solubility in ethanol (7.6 g/L at 25 °C), sulfur dioxide (2.95 g/L at 25 °C), ammonia (3.8 g/L at 0 °C), acetone (0.004% at 18 °C), acetonitrile (0.083 g/L at 18 °C), ethylacetate and other complex ethers, butanone, acetophenone, pyridine and chlorobenzene.

Despite its wide band gap of about 8.35 eV at 80 K, caesium chloride weakly conducts electricity, and the conductivity is not electronic but ionic. The conductivity has a value of the order 10 S/cm at 300 °C. It occurs through nearest-neighbor jumps of lattice vacancies, and the mobility is much higher for the Cl than Cs vacancies. The conductivity increases with temperature up to about 450 °C, with an activation energy changing from 0.6 to 1.3 eV at about 260 °C. It then sharply drops by two orders of magnitude because of the phase transition from the α-CsCl to β-CsCl phase. The conductivity is also suppressed by application of pressure (about 10 times decrease at 0.4 GPa) which reduces the mobility of lattice vacancies.

Properties of aqueous solutions of CsCl at 20 °C
Concentration,
wt%
Density,
kg/L
Concentration,
mol/L
refractive index
(at 589 nm)
Freezing point depression, °C relative to water Viscosity,
10 Pa·s
0.5 0.030 1.3334 0.10 1.000
1.0 1.0059 0.060 1.3337 0.20 0.997
2.0 1.0137 0.120 1.3345 0.40 0.992
3.0 0.182 1.3353 0.61 0.988
4.0 1.0296 0.245 1.3361 0.81 0.984
5.0 0.308 1.3369 1.02 0.980
6.0 1.0461 0.373 1.3377 1.22 0.977
7.0 0.438 1.3386 1.43 0.974
8.0 1.0629 0.505 1.3394 1.64 0.971
9.0 0.573 1.3403 1.85 0.969
10.0 1.0804 0.641 1.3412 2.06 0.966
12.0 1.0983 0.782 1.3430 2.51 0.961
14.0 1.1168 0.928 1.3448 2.97 0.955
16.0 1.1358 1.079 1.3468 3.46 0.950
18.0 1.1555 1.235 1.3487 3.96 0.945
20.0 1.1758 1.397 1.3507 4.49 0.939
22.0 1.1968 1.564 1.3528 0.934
24.0 1.2185 1.737 1.3550 0.930
26.0 1.917 1.3572 0.926
28.0 2.103 1.3594 0.924
30.0 1.2882 2.296 1.3617 0.922
32.0 2.497 1.3641 0.922
34.0 2.705 1.3666 0.924
36.0 2.921 1.3691 0.926
38.0 3.146 1.3717 0.930
40.0 1.4225 3.380 1.3744 0.934
42.0 3.624 1.3771 0.940
44.0 3.877 1.3800 0.947
46.0 4.142 1.3829 0.956
48.0 4.418 1.3860 0.967
50.0 1.5858 4.706 1.3892 0.981
60.0 1.7886 6.368 1.4076 1.120
64.0 7.163 1.4167 1.238

Reactions

Caesium chloride completely dissociates upon dissolution in water, and the Cs cations are solvated in dilute solution. CsCl converts to caesium sulfate upon being heated in concentrated sulfuric acid or heated with caesium hydrogen sulfate at 550–700 °C:

2 CsCl + H2SO4 → Cs2SO4 + 2 HCl
CsCl + CsHSO4 → Cs2SO4 + HCl

Caesium chloride forms a variety of double salts with other chlorides. Examples include 2CsCl·BaCl2, 2CsCl·CuCl2, CsCl·2CuCl and CsCl·LiCl, and with interhalogen compounds:

CsCl + ICl 3 Cs [ ICl 4 ] {\displaystyle {\ce {CsCl + ICl3 -> Cs}}}

Occurrence and production

Monatomic caesium halide wires grown inside double-wall carbon nanotubes.

Caesium chloride occurs naturally as an impurity in the halide minerals carnallite (KMgCl3·6H2O with up to 0.002% CsCl), sylvite (KCl) and kainite (MgSO4·KCl·3H2O), and in mineral waters. For example, the water of Bad Dürkheim spa, which was used in isolation of caesium, contained about 0.17 mg/L of CsCl. None of these minerals are commercially important.

On industrial scale, CsCl is produced from the mineral pollucite, which is powdered and treated with hydrochloric acid at elevated temperature. The extract is treated with antimony chloride, iodine monochloride, or cerium(IV) chloride to give the poorly soluble double salt, e.g.:

CsCl + SbCl3 → CsSbCl4

Treatment of the double salt with hydrogen sulfide gives CsCl:

2 CsSbCl4 + 3 H2S → 2 CsCl + Sb2S3 + 8 HCl

High-purity CsCl is also produced from recrystallized Cs [ ICl 2 ] {\displaystyle {\ce {Cs}}} (and Cs [ ICl 4 ] {\displaystyle {\ce {Cs}}} ) by thermal decomposition:

Cs [ ICl 2 ] CsCl + ICl {\displaystyle {\ce {Cs -> {CsCl}+ ICl}}}

Only about 20 tonnes of caesium compounds, with a major contribution from CsCl, were being produced annually around the 1970s and 2000s worldwide. Caesium chloride enriched with caesium-137 for radiation therapy applications is produced at a single facility Mayak in the Ural Region of Russia and is sold internationally through a UK dealer. The salt is synthesized at 200 °C because of its hygroscopic nature and sealed in a thimble-shaped steel container which is then enclosed into another steel casing. The sealing is required to protect the salt from moisture.

Laboratory methods

In the laboratory, CsCl can be obtained by treating caesium hydroxide, carbonate, caesium bicarbonate, or caesium sulfide with hydrochloric acid:

CsOH + HCl → CsCl + H2O
Cs2CO3 + 2 HCl → 2 CsCl + 2 H2O + CO2

Uses

Precursor to Cs metal

Caesium chloride is the main precursor to caesium metal by high-temperature reduction:

2 CsCl (l) + Mg (l) → MgCl2 (s) + 2 Cs (g)

A similar reaction – heating CsCl with calcium in vacuum in presence of phosphorus – was first reported in 1905 by the French chemist M. L. Hackspill and is still used industrially.

Caesium hydroxide is obtained by electrolysis of aqueous caesium chloride solution:

2 CsCl + 2 H2O → 2 CsOH + Cl2 + H2

Solute for ultracentrifugation

Caesium chloride is widely used in centrifugation in a technique known as isopycnic centrifugation. Centripetal and diffusive forces establish a density gradient that allow separation of mixtures on the basis of their molecular density. This technique allows separation of DNA of different densities (e.g. DNA fragments with differing A-T or G-C content). This application requires a solution with high density and yet relatively low viscosity, and CsCl suits it because of its high solubility in water, high density owing to the large mass of Cs, as well as low viscosity and high stability of CsCl solutions.

Organic chemistry

Caesium chloride is rarely used in organic chemistry. It can act as a phase transfer catalyst reagent in selected reactions. One of these reactions is the synthesis of glutamic acid derivatives

CH 2 = CHCOOCH 3 Methyl acrylate + ArCH = N CH ( CH 3 ) COOC ( CH 3 ) 3 CPME ,   0 C TBAB ,   CsCl ,   K 2 CO 3 ArCH = N C ( C 2 H 4 COOCH 3 ) ( CH 3 ) COOC ( CH 3 ) 3 {\displaystyle \overbrace {\ce {CH2=CHCOOCH3}} ^{\text{Methyl acrylate}}+{\ce {ArCH=N-CH(CH3)-COOC(CH3)3->{ArCH=N-C(C2H4COOCH3)(CH3)-COOC(CH3)3}}}}

where TBAB is tetrabutylammonium bromide (interphase catalyst) and CPME is a cyclopentyl methyl ether (solvent).

Another reaction is substitution of tetranitromethane

C ( NO 2 ) 4 tetranitromethane + CsCl DMF C ( NO 2 ) 3 Cl + CsNO 2 {\displaystyle \overbrace {{\ce {C(NO2)4}}} ^{\text{tetranitromethane}}+{\ce {CsCl -> {C(NO2)3Cl}+ CsNO2}}}

where DMF is dimethylformamide (solvent).

Analytical chemistry

Caesium chloride is a reagent in traditional analytical chemistry used for detecting inorganic ions via the color and morphology of the precipitates. Quantitative concentration measurement of some of these ions, e.g. Mg, with inductively coupled plasma mass spectrometry, is used to evaluate the hardness of water.

Ion Accompanying reagents Residue Morphology Detection limit (μg)
AsO3 KI Cs2 or Cs3 Red hexagons 0.01
Au AgCl, HCl Cs2Ag Gray-black crosses, four and six-beamed stars 0.01
Au NH4SCN Cs Orange-yellow needles 0.4
Bi KI, HCl Cs2 or 2.5H2O Red hexagons 0.13
Cu (CH3COO)2Pb, CH3COOH, KNO2 Cs2Pb Small black cubes 0.01
In Cs3 Small octahedra 0.02
Cs2 Small dark-red octahedra
Mg Na2HPO4 CsMgPO4 or 6H2O Small tetrahedra
Pb KI Cs Yellow-green needles 0.01
Pd NaBr Cs2 Dark-red needles and prisms
Cs Dark-red rhombs, bipyramids 0.2
Cs2 Small yellow-green octahedra 0.5
ReO4 CsReO4 Tetragonal bipyramids 0.13
Rh KNO2 Cs3 Yellow cubes 0.1
Ru Cs3 Pink needles
Cs2 Small dark-red crystals 0.8
Sb Cs2·nH2O Hexagons 0.16
Sb NaI Cs [ SbI 4 ] {\displaystyle {\ce {Cs}}} or Cs 2 [ SbI 5 ] {\displaystyle {\ce {Cs2}}} Red hexagons 0.1
Sn Cs2 Small octahedra 0.2
TeO3 HCl Cs2 Light yellow octahedra 0.3
Tl NaI Cs [ TlI 4 ] {\displaystyle {\ce {Cs}}} Orange-red hexagons or rectangles 0.06

It is also used for detection of the following ions:

Ion Accompanying reagents Detection Detection limit (μg/mL)
Al K2SO4 Colorless crystals form in neutral media after evaporation 0.01
Ga KHSO4 Colorless crystals form upon heating 0.5
Cr KHSO4 Pale-violet crystals precipitate in slightly acidic media 0.06

Medicine

The American Cancer Society states that "available scientific evidence does not support claims that non-radioactive cesium chloride supplements have any effect on tumors." The Food and Drug Administration has warned about safety risks, including significant heart toxicity and death, associated with the use of cesium chloride in naturopathic medicine.

Nuclear medicine and radiography

Caesium chloride composed of radioisotopes such as CsCl and CsCl, is used in nuclear medicine, including treatment of cancer (brachytherapy) and diagnosis of myocardial infarction. In the production of radioactive sources, it is normal to choose a chemical form of the radioisotope which would not be readily dispersed in the environment in the event of an accident. For instance, radiothermal generators (RTGs) often use strontium titanate, which is insoluble in water. For teletherapy sources, however, the radioactive density (Ci in a given volume) needs to be very high, which is not possible with known insoluble caesium compounds. A thimble-shaped container of radioactive caesium chloride provides the active source.

Miscellaneous applications

Caesium chloride is used in the preparation of electrically conducting glasses and screens of cathode ray tubes. In conjunction with rare gases CsCl is used in excimer lamps and excimer lasers. Other uses include activation of electrodes in welding; manufacture of mineral water, beer and drilling muds; and high-temperature solders. High-quality CsCl single crystals have a wide transparency range from UV to the infrared and therefore had been used for cuvettes, prisms and windows in optical spectrometers; this use was discontinued with the development of less hygroscopic materials.

CsCl is a potent inhibitor of HCN channels, which carry the h-current in excitable cells such as neurons. Therefore, it can be useful in electrophysiology experiments in neuroscience.

Toxicity

Caesium chloride has a low toxicity to humans and animals. Its median lethal dose (LD50) in mice is 2300 mg per kilogram of body weight for oral administration and 910 mg/kg for intravenous injection. The mild toxicity of CsCl is related to its ability to lower the concentration of potassium in the body and partly substitute it in biochemical processes. When taken in large quantities, however, can cause a significant imbalance in potassium and lead to hypokalemia, arrhythmia, and acute cardiac arrest. However, caesium chloride powder can irritate the mucous membranes and cause asthma.

Because of its high solubility in water, caesium chloride is highly mobile and can even diffuse through concrete. This is a drawback for its radioactive form which urges a search for less chemically mobile radioisotope materials. Commercial sources of radioactive caesium chloride are well sealed in a double steel enclosure. However, in the Goiânia accident in Brazil, such a source containing about 93 grams of CsCl, was stolen from an abandoned hospital and forced open by two scavengers. The blue glow emitted in the dark by the radioactive caesium chloride attracted the thieves and their relatives who were unaware of the associated dangers and spread the powder. This resulted in one of the worst radiation spill accidents in which 4 people died within a month from the exposure, 20 showed signs of radiation sickness, 249 people were contaminated with radioactive caesium chloride, and about a thousand received a dose exceeding a yearly amount of background radiation. More than 110,000 people overwhelmed the local hospitals, and several city blocks had to be demolished in the cleanup operations. In the first days of the contamination, stomach disorders and nausea due to radiation sickness were experienced by several people, but only after several days one person associated the symptoms with the powder and brought a sample to the authorities.

See also

References

  1. ^ Haynes, p. 4.57
  2. ^ Lushchik, A; Feldbach, E; Frorip, A; Ibragimov, K; Kuusmann, I; Lushchik, C (1994). "Relaxation of excitons in wide-gap CsCl crystals". Journal of Physics: Condensed Matter. 6 (12): 2357–2366. Bibcode:1994JPCM....6.2357L. doi:10.1088/0953-8984/6/12/009. S2CID 250824677.
  3. Haynes, p. 4.132
  4. Haynes, p. 10.240
  5. ^ Watanabe, M.; Tokonami, M.; Morimoto, N. (1977). "The transition mechanism between the CsCl-type and NaCl-type structures in CsCl". Acta Crystallographica Section A. 33 (2): 294. Bibcode:1977AcCrA..33..294W. doi:10.1107/S0567739477000722.
  6. Cesium chloride. nlm.nih.gov
  7. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  8. Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  9. Schulz, L. G. (1951). "Polymorphism of cesium and thallium halides". Acta Crystallographica. 4 (6): 487–489. Bibcode:1951AcCry...4..487S. doi:10.1107/S0365110X51001641.
  10. Lidin, p. 620
  11. "ЭСБЕ/Цезий". Brockhaus and Efron Encyclopedic Dictionary. 1890–1907. Retrieved 2011-04-15.
  12. ^ Knunyants, I. L, ed. (1998). "Цезия галогениды". Химическая энциклопедия (Chemical encyclopedia). Vol. 5. Moscow: Soviet Encyclopedia. p. 657. ISBN 978-5-85270-310-1.
  13. Haynes, p. 5.191
  14. Turova, N. Ya. (1997). Неорганическая химия в таблицах. Moscow. p. 85.{{cite book}}: CS1 maint: location missing publisher (link)
  15. ^ Plyushev, V.E.; Stepin, B. D (1975). Аналитическая химия рубидия и цезия. Moscow: Nauka. pp. 22–26.
  16. Plyushev, p. 97
  17. Plyushev, V.E.; et al. (1976). Bolshakov, K. A. (ed.). Химия и технология редких и рассеянных элементов. Vol. 1 (2 ed.). Moscow: Vysshaya Shkola. pp. 101–103.
  18. Ehrenreich, Henry (1984). Solid state physics: advances in research and applications. Academic Press. pp. 29–31. ISBN 978-0-12-607738-4.
  19. Haynes, p. 5.126
  20. Lidin, p. 645
  21. Lidin, R. A; Molochko V.; Andreeva, L. L. A. (2000). Химические свойства неорганических веществ (3 ed.). Moscow: Khimiya. p. 49. ISBN 978-5-7245-1163-6.
  22. Knunyants, I. L, ed. (1988). "Бария хлорид". Химическая энциклопедия. Vol. 1. Moscow: Soviet Encyclopedia. p. 463.
  23. National Research Council (U.S.). Office of Critical Tables, ed. (1962). Consolidated Index of Selected Property Values: Physical Chemistry and Thermodynamics (Publication 976 ed.). Washington, D.C.: National Academy of Science. p. 271.
  24. Knunyants, I. L, ed. (1992). "Полигалогениды". Химическая энциклопедия. Vol. 3. Moscow: Soviet encyclopedia. pp. 1237–1238. ISBN 978-5-85270-039-1.
  25. Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu (2014). "Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes". Nature Materials. 13 (11): 1050–4. Bibcode:2014NatMa..13.1050S. doi:10.1038/nmat4069. PMID 25218060.
  26. Knunyants, I. L, ed. (1998). "Цезий". Химическая энциклопедия (Chemical encyclopedia). Vol. 5. Moscow: Soviet Encyclopedia. pp. 654–656. ISBN 978-5-85270-310-1.
  27. Plyushev, pp. 210–211
  28. Plyushev, p. 206
  29. ^ "Cesium and Cesium Compounds". Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 5 (4th ed.). New York: John Wiley & Sons. 1994. pp. 375–376.
  30. Plsyushev, pp. 357–358
  31. ^ Bick, Manfred and Prinz, Horst (2002) "Cesium and Cesium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. Vol. A6, pp. 153–156. doi:10.1002/14356007.a06_153
  32. Halka M.; Nordstrom B. (2010). Alkali and Alkaline Earth Metals. Infobase Publishing. p. 52. ISBN 978-0-8160-7369-6.
  33. Enrique Lima "Cesium: Radionuclide" in Encyclopedia of Inorganic Chemistry, 2006, Wiley-VCH, Weinheim. doi:10.1002/0470862106.ia712
  34. ^ National Research Council (U.S.). Committee on Radiation Source Use and Replacement; Nuclear and Radiation Studies Board (January 2008). Radiation source use and replacement: abbreviated version. National Academies Press. pp. 28–. ISBN 978-0-309-11014-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  35. Hackspill, M. L. (1905). "Sur une nouvelle prepapratíon du rubidium et du cæsium". Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (in French). 141: 106.
  36. Plyushev, p. 90
  37. Kano T.; Kumano T.; Maruoka K. (2009). "Rate Enhancement of Phase Transfer Catalyzed Conjugate Additions by CsCl". Organic Letters. 11 (9): 2023–2025. doi:10.1021/ol900476e. PMID 19348469.
  38. Katritzky A. R.; Meth-Cohn O.; Rees Ch. W. (1995). Gilchrist, T. L. (ed.). Synthesis: Carbon with Three or Four Attached Heteroatoms. Comprehensive Organic Functional Group Transformations. Vol. 6 (First ed.). New York: Elsevier. p. 283. ISBN 978-0-08-040604-6.
  39. ГОСТ 52407-2005. Вода питьевая. Методы определения жесткости. Moscow: Стандартинформ. 2006.
  40. "Cesium Chloride". Complementary and Alternative Medicine: Herbs, Vitamins, and Minerals. American Cancer Society. 30 November 2008. Archived from the original on 2011-08-17. Retrieved 2011-05-13.
  41. "FDA alerts health care professionals of significant safety risks associated with cesium chloride". Food and Drug Administration. July 23, 2018.
  42. "FDA blacklists cesium chloride, ineffective and dangerous naturopathic cancer treatment". Science-Based Medicine. August 2, 2018.
  43. ^ Cesium. Mineral Commodity Summaries January 2010. U.S. Geological Survey
  44. Carrea, JR; Gleason, G; Shaw, J; Krontz, B (1964). "The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131" (PDF). American Heart Journal. 68 (5): 627–36. doi:10.1016/0002-8703(64)90271-6. hdl:2027.42/32170. PMID 14222401.
  45. McGeehan, John T. (1968). "Cesium 131 Photoscan: Aid in the Diagnosis of Myocardial Infarction". JAMA: The Journal of the American Medical Association. 204 (7): 585–589. doi:10.1001/jama.1968.03140200025006. PMID 5694480.
  46. Tver'yanovich, Y. S.; et al. (1998). "Optical absorption and composition of the nearest environment of neodymium in glasses based on the gallium-germanium-chalcogen system". Glass Phys. Chem. 24: 446.
  47. Klenovskii, M.S.; Kel'man, V.A.; Zhmenyak, Yu.V.; Shpenik, Yu.O. (2010). "Electric-discharge UV radiation source based on a Xe-CsCl vapor-gas mixture". Technical Physics. 55 (5): 709–714. Bibcode:2010JTePh..55..709K. doi:10.1134/S1063784210050178. S2CID 120781022.
  48. Klenovskii, M.S.; Kel'man, V.A.; Zhmenyak, Yu.V.; Shpenik, Yu.O. (2013). "Luminescence of XeCl* and XeBr* exciplex molecules initiated by a longitudinal pulsed discharge in a three-component mixture of Xe with CsCl and CsBr vapors". Optics and Spectroscopy. 114 (2): 197–204. Bibcode:2013OptSp.114..197K. doi:10.1134/S0030400X13010141. S2CID 123684289.
  49. "Тугоплавкие и химически активные металлы". Migatronic. Retrieved 2011-02-24.
  50. Morris, Ch. G., ed. (1992). "Cesium chloride". Academic Press Dictionary of Science and Technology. San Diego: Academic Press. p. 395. ISBN 978-0-12-200400-1.
  51. ^ "Cesium Chloride MSDS" (PDF). Cesium Fine Chemicals. Cabot Corporation. Archived from the original (PDF) on 2011-09-28. Retrieved 2011-04-11.
  52. Kogel, J. E.; Trivedi, N. C.; Barker, J. M, eds. (2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). Littleton: Society for Mining, Metallurgy, and Exploration. p. 1430. ISBN 978-0-87335-233-8.
  53. Biel, Martin; Christian Wahl-Schott; Stylianos Michalakis; Xiangang Zong (2009). "Hyperpolarization-Activated Cation Channels: From Genes to Function". Physiological Reviews. 89 (3): 847–85. doi:10.1152/physrev.00029.2008. PMID 19584315. S2CID 8090694.
  54. "Chemical Safety Data: Caesium chloride". Hands-on Science (H-Sci) Project: Chemical Safety Database. Physical and Theoretical Chemistry Laboratory, Oxford University. Archived from the original on 2011-08-07. Retrieved 2011-04-08.
  55. "Safety data for caesium chloride". Chemical and Other Safety Information. The Physical and Theoretical Chemistry Laboratory Oxford University. Archived from the original on 2010-11-22. Retrieved 2011-04-08.
  56. Lazarev N.V. and Gadaskina, I.D., ed. (1977). Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей (in Russian). Vol. 3 (7 ed.). St. Petersburg: Khimiya. pp. 328–329.
  57. Melnikov, P; Zanoni, LZ (June 2010). "Clinical effects of cesium intake". Biological Trace Element Research. 135 (1–3): 1–9. doi:10.1007/s12011-009-8486-7. PMID 19655100. S2CID 19186683.
  58. The Radiological Accident in Goiânia. Vienna: IAEA. 1988. ISBN 978-92-0-129088-5.. See pp. 1–6 for summary and p. 22 for the source description
  59. "The Worst Nuclear Disasters". Time. 2009.

Bibliography

  • Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida: CRC Press. ISBN 1-4398-5511-0.
  • Lidin, R. A; Andreeva, L. L.; Molochko V. A. (2006). Константы неорганических веществ: справочник (Inorganic compounds: data book). Moscow. ISBN 978-5-7107-8085-5.{{cite book}}: CS1 maint: location missing publisher (link)
  • Plyushev, V. E.; Stepin B. D. (1970). Химия и техtestнология соединений лития, рубидия и цезия (in Russian). Moscow: Khimiya.
Caesium compounds
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: