Misplaced Pages

Lead(II) chloride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Dichloroplumbylene)
Lead(II) chloride
Lead(II) chloride

The crystal structure of PbCl2, in the unconventional crystallographic setting Pnam. This corresponds to the standard Pnma setting by switching the labels on the b and c axes.
Names
IUPAC names Lead(II) chloride
Lead dichloride
Other names Plumbous chloride
Cotunnite
Dichloroplumbylene
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.028.950 Edit this at Wikidata
EC Number
  • 231-845-5
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2ClH.Pb/h2*1H;/q;;+2/p-2Key: HWSZZLVAJGOAAY-UHFFFAOYSA-L
SMILES
  • ClCl
Properties
Chemical formula PbCl2
Molar mass 278.10 g/mol
Appearance white odorless solid
Density 5.85 g/cm
Melting point 501 °C (934 °F; 774 K)
Boiling point 950 °C (1,740 °F; 1,220 K)
Solubility in water 0.99 g/100 mL (20 °C)
Solubility product (Ksp) 1.7×10 (20 °C)
Solubility slightly soluble in dilute HCl, ammonia;
insoluble in alcohol

Soluble in hot water as well as in presence of alkali hydroxide

Soluble in concentrated HCl (>6M)

Magnetic susceptibility (χ) −73.8·10 cm/mol
Refractive index (nD) 2.199
Structure
Crystal structure Orthorhombic, oP12
Space group Pnma (No. 62)
Lattice constant a = 762.040 pm, b = 453.420 pm, c = 904.520 pm
Formula units (Z) 4
Thermochemistry
Std molar
entropy
(S298)
135.98 J K mol
Std enthalpy of
formation
fH298)
-359.41 kJ/mol
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Signal word Danger
Hazard statements H302, H332, H351, H360, H372, H410
Precautionary statements P201, P261, P273, P304+P340, P308+P313, P312, P391
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3 0 0
Lethal dose or concentration (LD, LC):
LDLo (lowest published) 140 mg/kg (guinea pig, oral)
Related compounds
Other anions Lead(II) fluoride
Lead(II) bromide
Lead(II) iodide
Other cations Lead(IV) chloride
Tin(II) chloride
Germanium(II) chloride
Related compounds Thallium(I) chloride
Bismuth chloride
Supplementary data page
Lead(II) chloride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

Structure and properties

In solid PbCl2, each lead ion is coordinated by nine chloride ions in a tricapped triangular prism formation — six lie at the vertices of a triangular prism and three lie beyond the centers of each rectangular prism face. The 9 chloride ions are not equidistant from the central lead atom, 7 lie at 280–309 pm and 2 at 370 pm. PbCl2 forms white orthorhombic needles.

In the gas phase, PbCl2 molecules have a bent structure with the Cl–Pb–Cl angle being 98° and each Pb–-Cl bond distance being 2.44 Å. Such PbCl2 is emitted from internal combustion engines that use ethylene chloride-tetraethyllead additives for antiknock purposes.

PbCl2 is sparingly soluble in water, solubility product Ksp = 1.7×10 at 20 °C. It is one of only 5 commonly water-insoluble chlorides, the other 4 being thallium(I) chloride, silver chloride (AgCl) with Ksp = 1.8×10, copper(I) chloride (CuCl) with Ksp = 1.72×10 and mercury(I) chloride (Hg2Cl2) with Ksp = 1.3×10.

Synthesis

Solid lead(II) chloride precipitates upon addition of aqueous chloride sources (HCl, NaCl, KCl) to aqueous solutions of lead(II) compounds, such as lead(II) nitrate and lead(II) acetate:

Pb(NO3)2 + 2 HCl → PbCl2(s) + 2 HNO3

It also forms by treatment of basic lead(II) compounds such as Lead(II) oxide and lead(II) carbonate.

Lead dioxide is reduced by chloride as follows:

PbO2 + 4 HCl → PbCl2(s) + Cl2 + 2 H2O

It also formed by the oxidation of lead metal by copper(II) chloride:

Pb + CuCl2 → PbCl2 + Cu

Or most straightforwardly by the action of chlorine gas on lead metal:

Pb + Cl2 → PbCl2

Reactions

Addition of chloride ions to a suspension of PbCl2 gives rise to soluble complex ions. In these reactions the additional chloride (or other ligands) break up the chloride bridges that comprise the polymeric framework of solid PbCl2(s).

PbCl2(s) + Cl(aq)
PbCl2(s) + 2 Cl → (aq)

PbCl2 reacts with molten NaNO2 to give PbO:

PbCl2(l) + 3 NaNO2 → PbO + NaNO3 + 2 NO + 2 NaCl

PbCl2 is used in synthesis of lead(IV) chloride (PbCl4): Cl2 is bubbled through a saturated solution of PbCl2 in aqueous NH4Cl forming 2. The latter is reacted with cold concentrated sulfuric acid (H2SO4) forming PbCl4 as an oil.

Lead(II) chloride is the main precursor for organometallic derivatives of lead, such as plumbocenes. The usual alkylating agents are employed, including Grignard reagents and organolithium compounds:

2 PbCl2 + 4 RLi → R4Pb + 4 LiCl + Pb
2 PbCl2 + 4 RMgBr → R4Pb + Pb + 4 MgBrCl
3 PbCl2 + 6 RMgBr → R3Pb-PbR3 + Pb + 6 MgBrCl

These reactions produce derivatives that are more similar to organosilicon compounds, i.e. that Pb(II) tends to disproportionate upon alkylation.

PbCl2 can be used to produce PbO2 by treating it with sodium hypochlorite (NaClO), forming a reddish-brown precipitate of PbO2.

Uses

  • Molten PbCl2 is used in the synthesis of lead titanate and barium lead titanate ceramics by cation replacement reactions:
    x PbCl2(l) + BaTiO3(s) → Ba1−xPbxTiO3 + x BaCl2
  • PbCl2 is used in production of infrared transmitting glass, and ornamental glass called aurene glass. Aurene glass has an iridescent surface formed by spraying with PbCl2 and reheating under controlled conditions. Stannous chloride (SnCl2) is used for the same purpose.
  • Pb is used in HCl service even though the PbCl2 formed is slightly soluble in HCl. Addition of 6–25% of antimony (Sb) increases corrosion resistance.
  • A basic chloride of lead, PbCl2·Pb(OH)2, is known as Pattinson's white lead and is used as pigment in white paint. Lead paint is now banned as a health hazard in many countries by the White Lead (Painting) Convention, 1921.
  • PbCl2 is an intermediate in refining bismuth (Bi) ore. The ore containing Bi, Pb, and Zn is first treated with molten caustic soda to remove traces of arsenic and tellurium. This is followed by the Parkes process to remove any silver and gold present. There are now Bi, Pb, and Zn in the ore. At 500 °C, it receives treatment from Cl2 gas. First, ZnCl2 forms and is excreted. Pure Bi is left behind after PbCl2 forms and is eliminated. Lastly, BiCl3 would form.

Toxicity

Like other soluble lead compounds, exposure to PbCl2 may cause lead poisoning.

References

  1. NIST-data review 1980 Archived 2014-02-11 at the Wayback Machine
  2. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
  3. Sass, Ronald L.; Brackett, E. B.; Brackett, T. E. (1963). "THE CRYSTAL STRUCTURE OF LEAD CHLORIDE". The Journal of Physical Chemistry. 67 (12). American Chemical Society (ACS): 2863–2864. doi:10.1021/j100806a517. ISSN 0022-3654.
  4. "Lead compounds (as Pb)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. "Classifications - CL Inventory". echa.europa.eu.
  6. Wells A. F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6
  7. Hargittai, I; Tremmel, J; Vajda, E; Ishchenko, A; Ivanov, A; Ivashkevich, L; Spiridonov, V (1977). "Two independent gas electron diffraction investigations of the structure of plumbous chloride". Journal of Molecular Structure. 42: 147–151. Bibcode:1977JMoSt..42..147H. doi:10.1016/0022-2860(77)87038-5.
  8. CRC Handbook of Chemistry and Physics, 79th Edition, David R. Lide (Ed), p. 8-108
  9. Brown, Lemay, Burnsten. Chemistry The Central Science. "Solubility-Product Constants for Compounds at 25 °C". (ed 6, 1994). p. 1017
  10. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 365. ISBN 978-0-13-039913-7.
  11. Lowack, R (1994). "Decasubstituted decaphenylmetallocenes". J. Organomet. Chem. 476: 25–32. doi:10.1016/0022-328X(94)84136-5.
  12. Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. p. 524. ISBN 978-0-13-039913-7.
  13. Aboujalil, Almaz; Deloume, Jean-Pierre; Chassagneux, Fernand; Scharff, Jean-Pierre; Durand, Bernard (1998). "Molten salt synthesis of the lead titanate PbTiO3, investigation of the reactivity of various titanium and lead salts with molten alkali-metal nitrites". Journal of Materials Chemistry. 8 (7): 1601. doi:10.1039/a800003d.
  14. Dictionary of Inorganic and Organometallic Compounds. Lead(II) Chloride.
  15. Stained Glass Terms and Definitions. aurene glass
  16. Kirk-Othmer. Encyclopedia of Chemical Technology. (ed 4). p 913
  17. Perry & Phillips. Handbook of Inorganic Compounds. (1995). p 213
  18. Kirk-Othmer. Encyclopedia of Chemical Technology. (ed 4). p. 241

External links

Lead compounds
Pb(II)
Pb(II,IV)
Pb(IV)
Salts and covalent derivatives of the chloride ion
HCl He
LiCl BeCl2 B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaCl MgCl2 AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2 Ar
KCl CaCl
CaCl2
ScCl3 TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2 CuCl
CuCl2
ZnCl2 GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrCl Kr
RbCl SrCl2 YCl3 ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3 PdCl2 AgCl CdCl2 InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsCl BaCl2 * LuCl3 HfCl4 TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
AuCl
(Au)2
AuCl3
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3 PoCl2
PoCl4
AtCl Rn
FrCl RaCl2 ** LrCl3 RfCl4 DbCl5 SgO2Cl2 BhO3Cl Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCl3 CeCl3 PrCl3 NdCl2
NdCl3
PmCl3 SmCl2
SmCl3
EuCl2
EuCl3
GdCl3 TbCl3 DyCl2
DyCl3
HoCl3 ErCl3 TmCl2
TmCl3
YbCl2
YbCl3
** AcCl3 ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3 PuCl3 AmCl2
AmCl3
CmCl3 BkCl3 CfCl3
CfCl2
EsCl2
EsCl3
FmCl2 MdCl2 NoCl2
Categories: