Misplaced Pages

Euler's constant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Euler–Lehmer constants) Difference between logarithm and harmonic series Not to be confused with Euler's number, e ≈ 2.71828, the base of the natural logarithm.

This article uses technical mathematical notation for logarithms. All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or loge(x). Constant value used in mathematics
Euler's constant
γ
0.57721...
General information
TypeUnknown
Fields
History
Discovered1734
ByLeonhard Euler
First mentionDe Progressionibus harmonicis observationes
Named after
The area of the blue region converges to Euler's constant.

Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

γ = lim n ( log n + k = 1 n 1 k ) = 1 ( 1 x + 1 x ) d x . {\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left(-\log n+\sum _{k=1}^{n}{\frac {1}{k}}\right)\\&=\int _{1}^{\infty }\left(-{\frac {1}{x}}+{\frac {1}{\lfloor x\rfloor }}\right)\,\mathrm {d} x.\end{aligned}}}

Here, ⌊·⌋ represents the floor function.

The numerical value of Euler's constant, to 50 decimal places, is:

0.57721566490153286060651209008240243104215933593992... 

History

The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43), where he described it as "worthy of serious consideration". Euler initially calculated the constant's value to 6 decimal places. In 1781, he calculated it to 16 decimal places. Euler used the notations C and O for the constant. The Italian mathematician Lorenzo Mascheroni attempted to calculate the constant to 32 decimal places, but made errors in the 20th–22nd and 31st–32nd decimal places; starting from the 20th digit, he calculated ...1811209008239 when the correct value is ...0651209008240. In 1790, he used the notations A and a for the constant. Other computations were done by Johann von Soldner in 1809, who used the notation H. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time, perhaps because of the constant's connection to the gamma function. For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835, and Augustus De Morgan used it in a textbook published in parts from 1836 to 1842. Euler's constant was also studied by the Indian mathematician Srinivasa Ramanujan who published one paper on it in 1917. David Hilbert mentioned the irrationality of γ as an unsolved problem that seems "unapproachable" and, allegedly, the English mathematician Godfrey Hardy offered to give up his Savilian Chair at Oxford to anyone who could prove this.

Appearances

Euler's constant appears frequently in mathematics, especially in number theory and analysis. Examples include, among others, the following places: (where '*' means that this entry contains an explicit equation):

Analysis

Number theory

In other fields

Properties

Irrationality and transcendence

The number γ has not been proved algebraic or transcendental. In fact, it is not even known whether γ is irrational. The ubiquity of γ revealed by the large number of equations below and the fact that γ has been called the third most important mathematical constant after π and e makes the irrationality of γ a major open question in mathematics.

Unsolved problem in mathematics: Is Euler's constant irrational? If so, is it transcendental? (more unsolved problems in mathematics)

However, some progress has been made. In 1959 Andrei Shidlovsky proved that at least one of Euler's constant γ and the Gompertz constant δ is irrational; Tanguy Rivoal proved in 2012 that at least one of them is transcendental. Kurt Mahler showed in 1968 that the number π 2 Y 0 ( 2 ) J 0 ( 2 ) γ {\textstyle {\frac {\pi }{2}}{\frac {Y_{0}(2)}{J_{0}(2)}}-\gamma } is transcendental, where J 0 {\displaystyle J_{0}} and Y 0 {\displaystyle Y_{0}} are the usual Bessel functions. It is known that the transcendence degree of the field Q ( e , γ , δ ) {\displaystyle \mathbb {Q} (e,\gamma ,\delta )} is at least two.

In 2010, M. Ram Murty and N. Saradha showed that at most one of the Euler-Lehmer constants, i. e. the numbers of the form γ ( a , q ) = lim n ( log ( a + n q ) q + k = 0 n 1 a + k q ) {\displaystyle \gamma (a,q)=\lim _{n\rightarrow \infty }\left(-{\frac {\log {(a+nq})}{q}}+\sum _{k=0}^{n}{\frac {1}{a+kq}}\right)} is algebraic, if q ≥ 2 and 1 ≤ a < q; this family includes the special case γ(2,4) = γ/4.

Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property, where the generalized Euler constant are defined as γ ( Ω ) = lim x ( n = 1 x 1 Ω ( n ) n log x lim x n = 1 x 1 Ω ( n ) x ) , {\displaystyle \gamma (\Omega )=\lim _{x\rightarrow \infty }\left(\sum _{n=1}^{x}{\frac {1_{\Omega }(n)}{n}}-\log x\cdot \lim _{x\rightarrow \infty }{\frac {\sum _{n=1}^{x}1_{\Omega }(n)}{x}}\right),} where ⁠ Ω {\displaystyle \Omega } ⁠ is a fixed list of prime numbers, 1 Ω ( n ) = 0 {\displaystyle 1_{\Omega }(n)=0} if at least one of the primes in ⁠ Ω {\displaystyle \Omega } ⁠ is a prime factor of ⁠ n {\displaystyle n} ⁠, and 1 Ω ( n ) = 1 {\displaystyle 1_{\Omega }(n)=1} otherwise. In particular, ⁠ γ ( ) = γ {\displaystyle \gamma (\emptyset )=\gamma } ⁠.

Using a continued fraction analysis, Papanikolaou showed in 1997 that if γ is rational, its denominator must be greater than 10. If e is a rational number, then its denominator must be greater than 10.

Euler's constant is conjectured not to be an algebraic period, but the values of its first 10 decimal digits seem to indicate that it could be a normal number.

Continued fraction

The simple continued fraction expansion of Euler's constant is given by:

γ = 0 + 1 1 + 1 1 + 1 2 + 1 1 + 1 2 + 1 1 + 1 4 + {\displaystyle \gamma =0+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{4+\dots }}}}}}}}}}}}}}}

which has no apparent pattern. It is known to have at least 16,695,000,000 terms, and it has infinitely many terms if and only if γ is irrational.

The Khinchin limits for π {\displaystyle \pi } (red), γ {\displaystyle \gamma } (blue) and 2 3 {\displaystyle {\sqrt{2}}} (green).

Numerical evidence suggests that both Euler's constant γ as well as the constant e are among the numbers for which the geometric mean of their simple continued fraction terms converges to Khinchin's constant. Similarly, when p n / q n {\displaystyle p_{n}/q_{n}} are the convergents of their respective continued fractions, the limit lim n q n 1 / n {\displaystyle \lim _{n\to \infty }q_{n}^{1/n}} appears to converge to Lévy's constant in both cases. However neither of these limits has been proven.

There also exists a generalized continued fraction for Euler's constant.

A good simple approximation of γ is given by the reciprocal of the square root of 3 or about 0.57735:

1 3 = 0 + 1 1 + 1 1 + 1 2 + 1 1 + 1 2 + 1 1 + 1 2 + {\displaystyle {\frac {1}{\sqrt {3}}}=0+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{2+\dots }}}}}}}}}}}}}}}

with the difference being about 1 in 7,429.

Formulas and identities

Relation to gamma function

γ is related to the digamma function Ψ, and hence the derivative of the gamma function Γ, when both functions are evaluated at 1. Thus:

γ = Γ ( 1 ) = Ψ ( 1 ) . {\displaystyle -\gamma =\Gamma '(1)=\Psi (1).}

This is equal to the limits:

γ = lim z 0 ( Γ ( z ) 1 z ) = lim z 0 ( Ψ ( z ) + 1 z ) . {\displaystyle {\begin{aligned}-\gamma &=\lim _{z\to 0}\left(\Gamma (z)-{\frac {1}{z}}\right)\\&=\lim _{z\to 0}\left(\Psi (z)+{\frac {1}{z}}\right).\end{aligned}}}

Further limit results are:

lim z 0 1 z ( 1 Γ ( 1 + z ) 1 Γ ( 1 z ) ) = 2 γ lim z 0 1 z ( 1 Ψ ( 1 z ) 1 Ψ ( 1 + z ) ) = π 2 3 γ 2 . {\displaystyle {\begin{aligned}\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Gamma (1+z)}}-{\frac {1}{\Gamma (1-z)}}\right)&=2\gamma \\\lim _{z\to 0}{\frac {1}{z}}\left({\frac {1}{\Psi (1-z)}}-{\frac {1}{\Psi (1+z)}}\right)&={\frac {\pi ^{2}}{3\gamma ^{2}}}.\end{aligned}}}

A limit related to the beta function (expressed in terms of gamma functions) is

γ = lim n ( Γ ( 1 n ) Γ ( n + 1 ) n 1 + 1 n Γ ( 2 + n + 1 n ) n 2 n + 1 ) = lim m k = 1 m ( m k ) ( 1 ) k k log ( Γ ( k + 1 ) ) . {\displaystyle {\begin{aligned}\gamma &=\lim _{n\to \infty }\left({\frac {\Gamma \left({\frac {1}{n}}\right)\Gamma (n+1)\,n^{1+{\frac {1}{n}}}}{\Gamma \left(2+n+{\frac {1}{n}}\right)}}-{\frac {n^{2}}{n+1}}\right)\\&=\lim \limits _{m\to \infty }\sum _{k=1}^{m}{m \choose k}{\frac {(-1)^{k}}{k}}\log {\big (}\Gamma (k+1){\big )}.\end{aligned}}}

Relation to the zeta function

γ can also be expressed as an infinite sum whose terms involve the Riemann zeta function evaluated at positive integers:

γ = m = 2 ( 1 ) m ζ ( m ) m = log 4 π + m = 2 ( 1 ) m ζ ( m ) 2 m 1 m . {\displaystyle {\begin{aligned}\gamma &=\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{m}}\\&=\log {\frac {4}{\pi }}+\sum _{m=2}^{\infty }(-1)^{m}{\frac {\zeta (m)}{2^{m-1}m}}.\end{aligned}}} The constant γ {\displaystyle \gamma } can also be expressed in terms of the sum of the reciprocals of non-trivial zeros ρ {\displaystyle \rho } of the zeta function:

γ = log 4 π + ρ 2 ρ 2 {\displaystyle \gamma =\log 4\pi +\sum _{\rho }{\frac {2}{\rho }}-2}

Other series related to the zeta function include:

γ = 3 2 log 2 m = 2 ( 1 ) m m 1 m ( ζ ( m ) 1 ) = lim n ( 2 n 1 2 n log n + k = 2 n ( 1 k ζ ( 1 k ) n k ) ) = lim n ( 2 n e 2 n m = 0 2 m n ( m + 1 ) ! t = 0 m 1 t + 1 n log 2 + O ( 1 2 n e 2 n ) ) . {\displaystyle {\begin{aligned}\gamma &={\tfrac {3}{2}}-\log 2-\sum _{m=2}^{\infty }(-1)^{m}\,{\frac {m-1}{m}}{\big (}\zeta (m)-1{\big )}\\&=\lim _{n\to \infty }\left({\frac {2n-1}{2n}}-\log n+\sum _{k=2}^{n}\left({\frac {1}{k}}-{\frac {\zeta (1-k)}{n^{k}}}\right)\right)\\&=\lim _{n\to \infty }\left({\frac {2^{n}}{e^{2^{n}}}}\sum _{m=0}^{\infty }{\frac {2^{mn}}{(m+1)!}}\sum _{t=0}^{m}{\frac {1}{t+1}}-n\log 2+O\left({\frac {1}{2^{n}\,e^{2^{n}}}}\right)\right).\end{aligned}}}

The error term in the last equation is a rapidly decreasing function of n. As a result, the formula is well-suited for efficient computation of the constant to high precision.

Other interesting limits equaling Euler's constant are the antisymmetric limit:

γ = lim s 1 + n = 1 ( 1 n s 1 s n ) = lim s 1 ( ζ ( s ) 1 s 1 ) = lim s 0 ζ ( 1 + s ) + ζ ( 1 s ) 2 {\displaystyle {\begin{aligned}\gamma &=\lim _{s\to 1^{+}}\sum _{n=1}^{\infty }\left({\frac {1}{n^{s}}}-{\frac {1}{s^{n}}}\right)\\&=\lim _{s\to 1}\left(\zeta (s)-{\frac {1}{s-1}}\right)\\&=\lim _{s\to 0}{\frac {\zeta (1+s)+\zeta (1-s)}{2}}\end{aligned}}}

and the following formula, established in 1898 by de la Vallée-Poussin:

γ = lim n 1 n k = 1 n ( n k n k ) {\displaystyle \gamma =\lim _{n\to \infty }{\frac {1}{n}}\,\sum _{k=1}^{n}\left(\left\lceil {\frac {n}{k}}\right\rceil -{\frac {n}{k}}\right)}

where ⌈ ⌉ are ceiling brackets. This formula indicates that when taking any positive integer n and dividing it by each positive integer k less than n, the average fraction by which the quotient n/k falls short of the next integer tends to γ (rather than 0.5) as n tends to infinity.

Closely related to this is the rational zeta series expression. By taking separately the first few terms of the series above, one obtains an estimate for the classical series limit:

γ = lim n ( k = 1 n 1 k log n m = 2 ζ ( m , n + 1 ) m ) , {\displaystyle \gamma =\lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\log n-\sum _{m=2}^{\infty }{\frac {\zeta (m,n+1)}{m}}\right),}

where ζ(s, k) is the Hurwitz zeta function. The sum in this equation involves the harmonic numbers, Hn. Expanding some of the terms in the Hurwitz zeta function gives:

H n = log ( n ) + γ + 1 2 n 1 12 n 2 + 1 120 n 4 ε , {\displaystyle H_{n}=\log(n)+\gamma +{\frac {1}{2n}}-{\frac {1}{12n^{2}}}+{\frac {1}{120n^{4}}}-\varepsilon ,} where 0 < ε < ⁠1/252n⁠.

γ can also be expressed as follows where A is the Glaisher–Kinkelin constant:

γ = 12 log ( A ) log ( 2 π ) + 6 π 2 ζ ( 2 ) {\displaystyle \gamma =12\,\log(A)-\log(2\pi )+{\frac {6}{\pi ^{2}}}\,\zeta '(2)}

γ can also be expressed as follows, which can be proven by expressing the zeta function as a Laurent series:

γ = lim n ( n + ζ ( n + 1 n ) ) {\displaystyle \gamma =\lim _{n\to \infty }\left(-n+\zeta \left({\frac {n+1}{n}}\right)\right)}

Relation to triangular numbers

Numerous formulations have been derived that express γ {\displaystyle \gamma } in terms of sums and logarithms of triangular numbers. One of the earliest of these is a formula for the n {\displaystyle n} th harmonic number attributed to Srinivasa Ramanujan where γ {\displaystyle \gamma } is related to ln 2 T k {\displaystyle \textstyle \ln 2T_{k}} in a series that considers the powers of 1 T k {\displaystyle \textstyle {\frac {1}{T_{k}}}} (an earlier, less-generalizable proof by Ernesto Cesàro gives the first two terms of the series, with an error term):

γ = H u 1 2 ln 2 T u k = 1 v R ( k ) T u k Θ v R ( v + 1 ) T u v + 1 {\displaystyle {\begin{aligned}\gamma &=H_{u}-{\frac {1}{2}}\ln 2T_{u}-\sum _{k=1}^{v}{\frac {R(k)}{T_{u}^{k}}}-\Theta _{v}\,{\frac {R(v+1)}{T_{u}^{v+1}}}\end{aligned}}}

From Stirling's approximation follows a similar series:

γ = ln 2 π k = 2 ζ ( k ) T k {\displaystyle \gamma =\ln 2\pi -\sum _{k=2}^{\infty }{\frac {\zeta (k)}{T_{k}}}}

The series of inverse triangular numbers also features in the study of the Basel problem posed by Pietro Mengoli. Mengoli proved that k = 1 1 2 T k = 1 {\displaystyle \textstyle \sum _{k=1}^{\infty }{\frac {1}{2T_{k}}}=1} , a result Jacob Bernoulli later used to estimate the value of ζ ( 2 ) {\displaystyle \zeta (2)} , placing it between 1 {\displaystyle 1} and k = 1 2 2 T k = k = 1 1 T k = 2 {\displaystyle \textstyle \sum _{k=1}^{\infty }{\frac {2}{2T_{k}}}=\sum _{k=1}^{\infty }{\frac {1}{T_{k}}}=2} . This identity appears in a formula used by Bernhard Riemann to compute roots of the zeta function, where γ {\displaystyle \gamma } is expressed in terms of the sum of roots ρ {\displaystyle \rho } plus the difference between Boya's expansion and the series of exact unit fractions k = 1 1 T k {\displaystyle \textstyle \sum _{k=1}^{\infty }{\frac {1}{T_{k}}}} :

γ ln 2 = ln 2 π + ρ 2 ρ k = 1 1 T k {\displaystyle \gamma -\ln 2=\ln 2\pi +\sum _{\rho }{\frac {2}{\rho }}-\sum _{k=1}^{\infty }{\frac {1}{T_{k}}}}

Integrals

γ equals the value of a number of definite integrals:

γ = 0 e x log x d x = 0 1 log ( log 1 x ) d x = 0 ( 1 e x 1 1 x e x ) d x = 0 1 1 e x x d x 1 e x x d x = 0 1 ( 1 log x + 1 1 x ) d x = 0 ( 1 1 + x k e x ) d x x , k > 0 = 2 0 e x 2 e x x d x , = log π 4 0 log x cosh 2 x d x , = 0 1 H x d x , = 1 2 + 0 log ( 1 + log ( 1 + 1 t ) 2 4 π 2 ) d t = 1 0 1 { 1 / x } d x {\displaystyle {\begin{aligned}\gamma &=-\int _{0}^{\infty }e^{-x}\log x\,dx\\&=-\int _{0}^{1}\log \left(\log {\frac {1}{x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {1}{x\cdot e^{x}}}\right)dx\\&=\int _{0}^{1}{\frac {1-e^{-x}}{x}}\,dx-\int _{1}^{\infty }{\frac {e^{-x}}{x}}\,dx\\&=\int _{0}^{1}\left({\frac {1}{\log x}}+{\frac {1}{1-x}}\right)dx\\&=\int _{0}^{\infty }\left({\frac {1}{1+x^{k}}}-e^{-x}\right){\frac {dx}{x}},\quad k>0\\&=2\int _{0}^{\infty }{\frac {e^{-x^{2}}-e^{-x}}{x}}\,dx,\\&=\log {\frac {\pi }{4}}-\int _{0}^{\infty }{\frac {\log x}{\cosh ^{2}x}}\,dx,\\&=\int _{0}^{1}H_{x}\,dx,\\&={\frac {1}{2}}+\int _{0}^{\infty }\log \left(1+{\frac {\log \left(1+{\frac {1}{t}}\right)^{2}}{4\pi ^{2}}}\right)dt\\&=1-\int _{0}^{1}\{1/x\}dx\end{aligned}}} where Hx is the fractional harmonic number, and { 1 / x } {\displaystyle \{1/x\}} is the fractional part of 1 / x {\displaystyle 1/x} .

The third formula in the integral list can be proved in the following way:

0 ( 1 e x 1 1 x e x ) d x = 0 e x + x 1 x [ e x 1 ] d x = 0 1 x [ e x 1 ] m = 1 ( 1 ) m + 1 x m + 1 ( m + 1 ) ! d x = 0 m = 1 ( 1 ) m + 1 x m ( m + 1 ) ! [ e x 1 ] d x = m = 1 0 ( 1 ) m + 1 x m ( m + 1 ) ! [ e x 1 ] d x = m = 1 ( 1 ) m + 1 ( m + 1 ) ! 0 x m e x 1 d x = m = 1 ( 1 ) m + 1 ( m + 1 ) ! m ! ζ ( m + 1 ) = m = 1 ( 1 ) m + 1 m + 1 ζ ( m + 1 ) = m = 1 ( 1 ) m + 1 m + 1 n = 1 1 n m + 1 = m = 1 n = 1 ( 1 ) m + 1 m + 1 1 n m + 1 = n = 1 m = 1 ( 1 ) m + 1 m + 1 1 n m + 1 = n = 1 [ 1 n log ( 1 + 1 n ) ] = γ {\displaystyle {\begin{aligned}&\int _{0}^{\infty }\left({\frac {1}{e^{x}-1}}-{\frac {1}{xe^{x}}}\right)dx=\int _{0}^{\infty }{\frac {e^{-x}+x-1}{x}}dx=\int _{0}^{\infty }{\frac {1}{x}}\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}x^{m+1}}{(m+1)!}}dx\\&=\int _{0}^{\infty }\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}x^{m}}{(m+1)!}}dx=\sum _{m=1}^{\infty }\int _{0}^{\infty }{\frac {(-1)^{m+1}x^{m}}{(m+1)!}}dx=\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{(m+1)!}}\int _{0}^{\infty }{\frac {x^{m}}{e^{x}-1}}dx\\&=\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{(m+1)!}}m!\zeta (m+1)=\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{m+1}}\zeta (m+1)=\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{m+1}}\sum _{n=1}^{\infty }{\frac {1}{n^{m+1}}}=\sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {(-1)^{m+1}}{m+1}}{\frac {1}{n^{m+1}}}\\&=\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }{\frac {(-1)^{m+1}}{m+1}}{\frac {1}{n^{m+1}}}=\sum _{n=1}^{\infty }\left=\gamma \end{aligned}}}

The integral on the second line of the equation stands for the Debye function value of +∞, which is m!ζ(m + 1).

Definite integrals in which γ appears include:

0 e x 2 log x d x = ( γ + 2 log 2 ) π 4 0 e x log 2 x d x = γ 2 + π 2 6 0 e x log x e x + 1 d x = 1 2 log 2 2 γ {\displaystyle {\begin{aligned}\int _{0}^{\infty }e^{-x^{2}}\log x\,dx&=-{\frac {(\gamma +2\log 2){\sqrt {\pi }}}{4}}\\\int _{0}^{\infty }e^{-x}\log ^{2}x\,dx&=\gamma ^{2}+{\frac {\pi ^{2}}{6}}\\\int _{0}^{\infty }{\frac {e^{-x}\log x}{e^{x}+1}}\,dx&={\frac {1}{2}}\log ^{2}2-\gamma \end{aligned}}}

We also have Catalan's 1875 integral

γ = 0 1 ( 1 1 + x n = 1 x 2 n 1 ) d x . {\displaystyle \gamma =\int _{0}^{1}\left({\frac {1}{1+x}}\sum _{n=1}^{\infty }x^{2^{n}-1}\right)\,dx.}

One can express γ using a special case of Hadjicostas's formula as a double integral with equivalent series:

γ = 0 1 0 1 x 1 ( 1 x y ) log x y d x d y = n = 1 ( 1 n log n + 1 n ) . {\displaystyle {\begin{aligned}\gamma &=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1-xy)\log xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-\log {\frac {n+1}{n}}\right).\end{aligned}}}

An interesting comparison by Sondow is the double integral and alternating series

log 4 π = 0 1 0 1 x 1 ( 1 + x y ) log x y d x d y = n = 1 ( ( 1 ) n 1 ( 1 n log n + 1 n ) ) . {\displaystyle {\begin{aligned}\log {\frac {4}{\pi }}&=\int _{0}^{1}\int _{0}^{1}{\frac {x-1}{(1+xy)\log xy}}\,dx\,dy\\&=\sum _{n=1}^{\infty }\left((-1)^{n-1}\left({\frac {1}{n}}-\log {\frac {n+1}{n}}\right)\right).\end{aligned}}}

It shows that log ⁠4/π⁠ may be thought of as an "alternating Euler constant".

The two constants are also related by the pair of series

γ = n = 1 N 1 ( n ) + N 0 ( n ) 2 n ( 2 n + 1 ) log 4 π = n = 1 N 1 ( n ) N 0 ( n ) 2 n ( 2 n + 1 ) , {\displaystyle {\begin{aligned}\gamma &=\sum _{n=1}^{\infty }{\frac {N_{1}(n)+N_{0}(n)}{2n(2n+1)}}\\\log {\frac {4}{\pi }}&=\sum _{n=1}^{\infty }{\frac {N_{1}(n)-N_{0}(n)}{2n(2n+1)}},\end{aligned}}}

where N1(n) and N0(n) are the number of 1s and 0s, respectively, in the base 2 expansion of n.

Series expansions

In general,

γ = lim n ( 1 1 + 1 2 + 1 3 + + 1 n log ( n + α ) ) lim n γ n ( α ) {\displaystyle \gamma =\lim _{n\to \infty }\left({\frac {1}{1}}+{\frac {1}{2}}+{\frac {1}{3}}+\ldots +{\frac {1}{n}}-\log(n+\alpha )\right)\equiv \lim _{n\to \infty }\gamma _{n}(\alpha )}

for any α > −n. However, the rate of convergence of this expansion depends significantly on α. In particular, γn(1/2) exhibits much more rapid convergence than the conventional expansion γn(0). This is because

1 2 ( n + 1 ) < γ n ( 0 ) γ < 1 2 n , {\displaystyle {\frac {1}{2(n+1)}}<\gamma _{n}(0)-\gamma <{\frac {1}{2n}},}

while

1 24 ( n + 1 ) 2 < γ n ( 1 / 2 ) γ < 1 24 n 2 . {\displaystyle {\frac {1}{24(n+1)^{2}}}<\gamma _{n}(1/2)-\gamma <{\frac {1}{24n^{2}}}.}

Even so, there exist other series expansions which converge more rapidly than this; some of these are discussed below.

Euler showed that the following infinite series approaches γ: γ = k = 1 ( 1 k log ( 1 + 1 k ) ) . {\displaystyle \gamma =\sum _{k=1}^{\infty }\left({\frac {1}{k}}-\log \left(1+{\frac {1}{k}}\right)\right).}

The series for γ is equivalent to a series Nielsen found in 1897:

γ = 1 k = 2 ( 1 ) k log 2 k k + 1 . {\displaystyle \gamma =1-\sum _{k=2}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k+1}}.}

In 1910, Vacca found the closely related series

γ = k = 1 ( 1 ) k log 2 k k = 1 2 1 3 + 2 ( 1 4 1 5 + 1 6 1 7 ) + 3 ( 1 8 1 9 + 1 10 1 11 + 1 15 ) + , {\displaystyle {\begin{aligned}\gamma &=\sum _{k=1}^{\infty }(-1)^{k}{\frac {\left\lfloor \log _{2}k\right\rfloor }{k}}\\&={\tfrac {1}{2}}-{\tfrac {1}{3}}+2\left({\tfrac {1}{4}}-{\tfrac {1}{5}}+{\tfrac {1}{6}}-{\tfrac {1}{7}}\right)+3\left({\tfrac {1}{8}}-{\tfrac {1}{9}}+{\tfrac {1}{10}}-{\tfrac {1}{11}}+\cdots -{\tfrac {1}{15}}\right)+\cdots ,\end{aligned}}}

where log2 is the logarithm to base 2 and ⌊ ⌋ is the floor function.

This can be generalized to:

γ = k = 1 log B k k ε ( k ) {\displaystyle \gamma =\sum _{k=1}^{\infty }{\frac {\left\lfloor \log _{B}k\right\rfloor }{k}}\varepsilon (k)} where: ε ( k ) = { B 1 , if  B n 1 , if  B n {\displaystyle \varepsilon (k)={\begin{cases}B-1,&{\text{if }}B\mid n\\-1,&{\text{if }}B\nmid n\end{cases}}}

In 1926 Vacca found a second series:

γ + ζ ( 2 ) = k = 2 ( 1 k 2 1 k ) = k = 2 k k 2 k k 2 = 1 2 + 2 3 + 1 2 2 k = 1 2 2 k k + 2 2 + 1 3 2 k = 1 3 2 k k + 3 2 + {\displaystyle {\begin{aligned}\gamma +\zeta (2)&=\sum _{k=2}^{\infty }\left({\frac {1}{\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}-{\frac {1}{k}}\right)\\&=\sum _{k=2}^{\infty }{\frac {k-\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}{k\left\lfloor {\sqrt {k}}\right\rfloor ^{2}}}\\&={\frac {1}{2}}+{\frac {2}{3}}+{\frac {1}{2^{2}}}\sum _{k=1}^{2\cdot 2}{\frac {k}{k+2^{2}}}+{\frac {1}{3^{2}}}\sum _{k=1}^{3\cdot 2}{\frac {k}{k+3^{2}}}+\cdots \end{aligned}}}

From the MalmstenKummer expansion for the logarithm of the gamma function we get:

γ = log π 4 log ( Γ ( 3 4 ) ) + 4 π k = 1 ( 1 ) k + 1 log ( 2 k + 1 ) 2 k + 1 . {\displaystyle \gamma =\log \pi -4\log \left(\Gamma ({\tfrac {3}{4}})\right)+{\frac {4}{\pi }}\sum _{k=1}^{\infty }(-1)^{k+1}{\frac {\log(2k+1)}{2k+1}}.}

Ramanujan, in his lost notebook gave a series that approaches γ:

γ = log 2 n = 1 k = 3 n 1 + 1 2 3 n 1 2 2 n ( 3 k ) 3 3 k {\displaystyle \gamma =\log 2-\sum _{n=1}^{\infty }\sum _{k={\frac {3^{n-1}+1}{2}}}^{\frac {3^{n}-1}{2}}{\frac {2n}{(3k)^{3}-3k}}}

An important expansion for Euler's constant is due to Fontana and Mascheroni

γ = n = 1 | G n | n = 1 2 + 1 24 + 1 72 + 19 2880 + 3 800 + , {\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {|G_{n}|}{n}}={\frac {1}{2}}+{\frac {1}{24}}+{\frac {1}{72}}+{\frac {19}{2880}}+{\frac {3}{800}}+\cdots ,} where Gn are Gregory coefficients. This series is the special case k = 1 of the expansions

γ = H k 1 log k + n = 1 ( n 1 ) ! | G n | k ( k + 1 ) ( k + n 1 ) = H k 1 log k + 1 2 k + 1 12 k ( k + 1 ) + 1 12 k ( k + 1 ) ( k + 2 ) + 19 120 k ( k + 1 ) ( k + 2 ) ( k + 3 ) + {\displaystyle {\begin{aligned}\gamma &=H_{k-1}-\log k+\sum _{n=1}^{\infty }{\frac {(n-1)!|G_{n}|}{k(k+1)\cdots (k+n-1)}}&&\\&=H_{k-1}-\log k+{\frac {1}{2k}}+{\frac {1}{12k(k+1)}}+{\frac {1}{12k(k+1)(k+2)}}+{\frac {19}{120k(k+1)(k+2)(k+3)}}+\cdots &&\end{aligned}}}

convergent for k = 1, 2, ...

A similar series with the Cauchy numbers of the second kind Cn is

γ = 1 n = 1 C n n ( n + 1 ) ! = 1 1 4 5 72 1 32 251 14400 19 1728 {\displaystyle \gamma =1-\sum _{n=1}^{\infty }{\frac {C_{n}}{n\,(n+1)!}}=1-{\frac {1}{4}}-{\frac {5}{72}}-{\frac {1}{32}}-{\frac {251}{14400}}-{\frac {19}{1728}}-\ldots }

Blagouchine (2018) found an interesting generalisation of the Fontana–Mascheroni series

γ = n = 1 ( 1 ) n + 1 2 n { ψ n ( a ) + ψ n ( a 1 + a ) } , a > 1 {\displaystyle \gamma =\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n}}{\Big \{}\psi _{n}(a)+\psi _{n}{\Big (}-{\frac {a}{1+a}}{\Big )}{\Big \}},\quad a>-1}

where ψn(a) are the Bernoulli polynomials of the second kind, which are defined by the generating function

z ( 1 + z ) s log ( 1 + z ) = n = 0 z n ψ n ( s ) , | z | < 1. {\displaystyle {\frac {z(1+z)^{s}}{\log(1+z)}}=\sum _{n=0}^{\infty }z^{n}\psi _{n}(s),\qquad |z|<1.}

For any rational a this series contains rational terms only. For example, at a = 1, it becomes

γ = 3 4 11 96 1 72 311 46080 5 1152 7291 2322432 243 100352 {\displaystyle \gamma ={\frac {3}{4}}-{\frac {11}{96}}-{\frac {1}{72}}-{\frac {311}{46080}}-{\frac {5}{1152}}-{\frac {7291}{2322432}}-{\frac {243}{100352}}-\ldots } Other series with the same polynomials include these examples:

γ = log ( a + 1 ) n = 1 ( 1 ) n ψ n ( a ) n , ( a ) > 1 {\displaystyle \gamma =-\log(a+1)-\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n}(a)}{n}},\qquad \Re (a)>-1}

and

γ = 2 1 + 2 a { log Γ ( a + 1 ) 1 2 log ( 2 π ) + 1 2 + n = 1 ( 1 ) n ψ n + 1 ( a ) n } , ( a ) > 1 {\displaystyle \gamma =-{\frac {2}{1+2a}}\left\{\log \Gamma (a+1)-{\frac {1}{2}}\log(2\pi )+{\frac {1}{2}}+\sum _{n=1}^{\infty }{\frac {(-1)^{n}\psi _{n+1}(a)}{n}}\right\},\qquad \Re (a)>-1}

where Γ(a) is the gamma function.

A series related to the Akiyama–Tanigawa algorithm is

γ = log ( 2 π ) 2 2 n = 1 ( 1 ) n G n ( 2 ) n = log ( 2 π ) 2 + 2 3 + 1 24 + 7 540 + 17 2880 + 41 12600 + {\displaystyle \gamma =\log(2\pi )-2-2\sum _{n=1}^{\infty }{\frac {(-1)^{n}G_{n}(2)}{n}}=\log(2\pi )-2+{\frac {2}{3}}+{\frac {1}{24}}+{\frac {7}{540}}+{\frac {17}{2880}}+{\frac {41}{12600}}+\ldots }

where Gn(2) are the Gregory coefficients of the second order.

As a series of prime numbers:

γ = lim n ( log n p n log p p 1 ) . {\displaystyle \gamma =\lim _{n\to \infty }\left(\log n-\sum _{p\leq n}{\frac {\log p}{p-1}}\right).}

Asymptotic expansions

γ equals the following asymptotic formulas (where Hn is the nth harmonic number):

  • γ H n log n 1 2 n + 1 12 n 2 1 120 n 4 + {\textstyle \gamma \sim H_{n}-\log n-{\frac {1}{2n}}+{\frac {1}{12n^{2}}}-{\frac {1}{120n^{4}}}+\cdots } (Euler)
  • γ H n log ( n + 1 2 + 1 24 n 1 48 n 2 + ) {\textstyle \gamma \sim H_{n}-\log \left({n+{\frac {1}{2}}+{\frac {1}{24n}}-{\frac {1}{48n^{2}}}+\cdots }\right)} (Negoi)
  • γ H n log n + log ( n + 1 ) 2 1 6 n ( n + 1 ) + 1 30 n 2 ( n + 1 ) 2 {\textstyle \gamma \sim H_{n}-{\frac {\log n+\log(n+1)}{2}}-{\frac {1}{6n(n+1)}}+{\frac {1}{30n^{2}(n+1)^{2}}}-\cdots } (Cesàro)

The third formula is also called the Ramanujan expansion.

Alabdulmohsin derived closed-form expressions for the sums of errors of these approximations. He showed that (Theorem A.1):

n = 1 ( log n + γ H n + 1 2 n ) = log ( 2 π ) 1 γ 2 n = 1 ( log n ( n + 1 ) + γ H n ) = log ( 2 π ) 1 2 γ n = 1 ( 1 ) n ( log n + γ H n ) = log π γ 2 {\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\Big (}\log n+\gamma -H_{n}+{\frac {1}{2n}}{\Big )}&={\frac {\log(2\pi )-1-\gamma }{2}}\\\sum _{n=1}^{\infty }{\Big (}\log {\sqrt {n(n+1)}}+\gamma -H_{n}{\Big )}&={\frac {\log(2\pi )-1}{2}}-\gamma \\\sum _{n=1}^{\infty }(-1)^{n}{\Big (}\log n+\gamma -H_{n}{\Big )}&={\frac {\log \pi -\gamma }{2}}\end{aligned}}}

Exponential

The constant e is important in number theory. Its numerical value is:

1.78107241799019798523650410310717954916964521430343....

e equals the following limit, where pn is the nth prime number:

e γ = lim n 1 log p n i = 1 n p i p i 1 . {\displaystyle e^{\gamma }=\lim _{n\to \infty }{\frac {1}{\log p_{n}}}\prod _{i=1}^{n}{\frac {p_{i}}{p_{i}-1}}.}

This restates the third of Mertens' theorems.

We further have the following product involving the three constants e, π and γ:

π 2 6 e γ = lim n 1 log p n i = 1 n p i p i + 1 . {\displaystyle {\frac {\pi ^{2}}{6e^{\gamma }}}=\lim _{n\to \infty }{\frac {1}{\log p_{n}}}\prod _{i=1}^{n}{\frac {p_{i}}{p_{i}+1}}.}

Other infinite products relating to e include:

e 1 + γ 2 2 π = n = 1 e 1 + 1 2 n ( 1 + 1 n ) n e 3 + 2 γ 2 π = n = 1 e 2 + 2 n ( 1 + 2 n ) n . {\displaystyle {\begin{aligned}{\frac {e^{1+{\frac {\gamma }{2}}}}{\sqrt {2\pi }}}&=\prod _{n=1}^{\infty }e^{-1+{\frac {1}{2n}}}\left(1+{\frac {1}{n}}\right)^{n}\\{\frac {e^{3+2\gamma }}{2\pi }}&=\prod _{n=1}^{\infty }e^{-2+{\frac {2}{n}}}\left(1+{\frac {2}{n}}\right)^{n}.\end{aligned}}}

These products result from the Barnes G-function.

In addition,

e γ = 2 1 2 2 1 3 3 2 3 4 1 3 3 4 2 4 4 4 1 3 6 5 5 {\displaystyle e^{\gamma }={\sqrt {\frac {2}{1}}}\cdot {\sqrt{\frac {2^{2}}{1\cdot 3}}}\cdot {\sqrt{\frac {2^{3}\cdot 4}{1\cdot 3^{3}}}}\cdot {\sqrt{\frac {2^{4}\cdot 4^{4}}{1\cdot 3^{6}\cdot 5}}}\cdots }

where the nth factor is the (n + 1)th root of

k = 0 n ( k + 1 ) ( 1 ) k + 1 ( n k ) . {\displaystyle \prod _{k=0}^{n}(k+1)^{(-1)^{k+1}{n \choose k}}.}

This infinite product, first discovered by Ser in 1926, was rediscovered by Sondow using hypergeometric functions.

It also holds that

e π 2 + e π 2 π e γ = n = 1 ( e 1 n ( 1 + 1 n + 1 2 n 2 ) ) . {\displaystyle {\frac {e^{\frac {\pi }{2}}+e^{-{\frac {\pi }{2}}}}{\pi e^{\gamma }}}=\prod _{n=1}^{\infty }\left(e^{-{\frac {1}{n}}}\left(1+{\frac {1}{n}}+{\frac {1}{2n^{2}}}\right)\right).}

Published digits

Published decimal expansions of γ
Date Decimal digits Author Sources
1734 5 Leonhard Euler
1735 15 Leonhard Euler
1781 16 Leonhard Euler
1790 32 Lorenzo Mascheroni, with 20–22 and 31–32 wrong
1809 22 Johann G. von Soldner
1811 22 Carl Friedrich Gauss
1812 40 Friedrich Bernhard Gottfried Nicolai
1861 41 Ludwig Oettinger
1867 49 William Shanks
1871 100 James W.L. Glaisher
1877 263 J. C. Adams
1952 328 John William Wrench Jr.
1961 1050 Helmut Fischer and Karl Zeller
1962 1271 Donald Knuth
1963 3566 Dura W. Sweeney
1973 4879 William A. Beyer and Michael S. Waterman
1977 20700 Richard P. Brent
1980 30100 Richard P. Brent & Edwin M. McMillan
1993 172000 Jonathan Borwein
1997 1000000 Thomas Papanikolaou
1998 7286255 Xavier Gourdon
1999 108000000 Patrick Demichel and Xavier Gourdon
March 13, 2009 29844489545 Alexander J. Yee & Raymond Chan
December 22, 2013 119377958182 Alexander J. Yee
March 15, 2016 160000000000 Peter Trueb
May 18, 2016 250000000000 Ron Watkins
August 23, 2017 477511832674 Ron Watkins
May 26, 2020 600000000100 Seungmin Kim & Ian Cutress
May 13, 2023 700000000000 Jordan Ranous & Kevin O'Brien
September 7, 2023 1337000000000 Andrew Sun

Generalizations

Stieltjes constants

Main article: Stieltjes constants
Euler's generalized constants abm(- α {\displaystyle \alpha } ) for α > 0.

Euler's generalized constants are given by

γ α = lim n ( k = 1 n 1 k α 1 n 1 x α d x ) {\displaystyle \gamma _{\alpha }=\lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k^{\alpha }}}-\int _{1}^{n}{\frac {1}{x^{\alpha }}}\,dx\right)}

for 0 < α < 1, with γ as the special case α = 1. Extending for α > 1 gives:

γ α = ζ ( α ) 1 α 1 {\displaystyle \gamma _{\alpha }=\zeta (\alpha )-{\frac {1}{\alpha -1}}}

with again the limit:

γ = lim a 1 ( ζ ( a ) 1 a 1 ) {\displaystyle \gamma =\lim _{a\to 1}\left(\zeta (a)-{\frac {1}{a-1}}\right)}

This can be further generalized to

c f = lim n ( k = 1 n f ( k ) 1 n f ( x ) d x ) {\displaystyle c_{f}=\lim _{n\to \infty }\left(\sum _{k=1}^{n}f(k)-\int _{1}^{n}f(x)\,dx\right)}

for some arbitrary decreasing function f. Setting

f n ( x ) = ( log x ) n x {\displaystyle f_{n}(x)={\frac {(\log x)^{n}}{x}}}

gives rise to the Stieltjes constants γ n {\displaystyle \gamma _{n}} , that occur in the Laurent series expansion of the Riemann zeta function:

ζ ( 1 + s ) = 1 s + n = 0 ( 1 ) n n ! γ n s n . {\displaystyle \zeta (1+s)={\frac {1}{s}}+\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!}}\gamma _{n}s^{n}.}

with γ 0 = γ = 0.577 {\displaystyle \gamma _{0}=\gamma =0.577\dots }

n approximate value of γn OEIS
0 +0.5772156649015 A001620
1 −0.0728158454836 A082633
2 −0.0096903631928 A086279
3 +0.0020538344203 A086280
4 +0.0023253700654 A086281
100 −4.2534015717080 × 10
1000 −1.5709538442047 × 10

Euler-Lehmer constants

Euler–Lehmer constants are given by summation of inverses of numbers in a common modulo class:

γ ( a , q ) = lim x ( 0 < n x n a ( mod q ) 1 n log x q ) . {\displaystyle \gamma (a,q)=\lim _{x\to \infty }\left(\sum _{0<n\leq x \atop n\equiv a{\pmod {q}}}{\frac {1}{n}}-{\frac {\log x}{q}}\right).}

The basic properties are

γ ( 0 , q ) = γ log q q , a = 0 q 1 γ ( a , q ) = γ , q γ ( a , q ) = γ j = 1 q 1 e 2 π a i j q log ( 1 e 2 π i j q ) , {\displaystyle {\begin{aligned}&\gamma (0,q)={\frac {\gamma -\log q}{q}},\\&\sum _{a=0}^{q-1}\gamma (a,q)=\gamma ,\\&q\gamma (a,q)=\gamma -\sum _{j=1}^{q-1}e^{-{\frac {2\pi aij}{q}}}\log \left(1-e^{\frac {2\pi ij}{q}}\right),\end{aligned}}}

and if the greatest common divisor gcd(a,q) = d then

q γ ( a , q ) = q d γ ( a d , q d ) log d . {\displaystyle q\gamma (a,q)={\frac {q}{d}}\gamma \left({\frac {a}{d}},{\frac {q}{d}}\right)-\log d.}

Masser-Gramain constant

A two-dimensional generalization of Euler's constant is the Masser-Gramain constant. It is defined as the following limiting difference:

δ = lim n ( log n + k = 2 n 1 π r k 2 ) {\displaystyle \delta =\lim _{n\to \infty }\left(-\log n+\sum _{k=2}^{n}{\frac {1}{\pi r_{k}^{2}}}\right)}

where r k {\displaystyle r_{k}} is the smallest radius of a disk in the complex plane containing at least k {\displaystyle k} Gaussian integers.

The following bounds have been established: 1.819776 < δ < 1.819833 {\displaystyle 1.819776<\delta <1.819833} .

See also

References

Footnotes

  1. ^ Sloane, N. J. A. (ed.). "Sequence A001620 (Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Weisstein, Eric W. "Euler-Mascheroni Constant". mathworld.wolfram.com. Retrieved 2024-10-19.
  3. ^ Lagarias 2013.
  4. Bretschneider 1837, "γ = c = 0,5772156649015328606181120900823..." on p. 260.
  5. De Morgan, Augustus (1836–1842). The differential and integral calculus. London: Baldwin and Craddoc. "γ" on p. 578.
  6. Brent, Richard P. (1994). "Ramanujan and Euler's Constant" (PDF). Proc. Symp. Applied Math. Proceedings of Symposia in Applied Mathematics. 48: 541–545. doi:10.1090/psapm/048/1314887. ISBN 978-0-8218-0291-5.
  7. Sondow, Jonathan (2004). "The Euler constant: γ". Retrieved 2024-11-01.
  8. Davis, P. J. (1959). "Leonhard Euler's Integral: A Historical Profile of the Gamma Function". American Mathematical Monthly. 66 (10): 849–869. doi:10.2307/2309786. JSTOR 2309786. Archived from the original on 7 November 2012. Retrieved 3 December 2016.
  9. "DLMF: §5.17 Barnes' 𝐺-Function (Double Gamma Function) ‣ Properties ‣ Chapter 5 Gamma Function". dlmf.nist.gov. Retrieved 2024-11-01.
  10. Weisstein, Eric W. "Digamma Function". mathworld.wolfram.com. Retrieved 2024-10-30.
  11. Weisstein, Eric W. "Stieltjes Constants". mathworld.wolfram.com. Retrieved 2024-11-01.
  12. ^ Finch, Steven R. (2003-08-18). Mathematical Constants. Cambridge University Press. ISBN 978-0-521-81805-6.
  13. ^ Blagouchine, Iaroslav V. (2014-10-01). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. ISSN 1572-9303.
  14. Williams, John (1973). Laplace transforms. Problem solvers. London: Allen & Unwin. ISBN 978-0-04-512021-5.
  15. "DLMF: §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations". dlmf.nist.gov. Retrieved 2024-11-01.
  16. ^ "DLMF: §6.6 Power Series ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals". dlmf.nist.gov. Retrieved 2024-11-01.
  17. Weisstein, Eric W. "Logarithmic Integral". mathworld.wolfram.com. Retrieved 2024-11-01.
  18. "DLMF: §10.32 Integral Representations ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  19. "DLMF: §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  20. "DLMF: §10.8 Power Series ‣ Bessel Functions and Hankel Functions ‣ Chapter 10 Bessel Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  21. "DLMF: §10.24 Functions of Imaginary Order ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  22. "DLMF: §11.6 Asymptotic Expansions ‣ Struve and Modified Struve Functions ‣ Chapter 11 Struve and Related Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  23. "DLMF: §13.2 Definitions and Basic Properties ‣ Kummer Functions ‣ Chapter 11 Confluent Hypergeometric Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  24. "DLMF: §9.12 Scorer Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions". dlmf.nist.gov. Retrieved 2024-11-01.
  25. Rosser, J. Barkley; Schoenfeld, Lowell (1962). "Approximate formulas for some functions of prime numbers". Illinois Journal of Mathematics. 6 (1): 64–94. doi:10.1215/ijm/1255631807. ISSN 0019-2082.
  26. Hardy, Godfrey H.; Wright, Edward M.; Silverman, Joseph H. (2008). Heath-Brown, D. R. (ed.). An introduction to the theory of numbers. Oxford mathematics (6th ed.). Oxford New York Auckland: Oxford University Press. p. 469-471. ISBN 978-0-19-921986-5.
  27. ^ Waldschmidt, Michel (2023). "On Euler's Constant" (PDF). Sorbonne Université, Institut de Mathématiques de Jussieu, Paris.
  28. Robin, Guy (1984). "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann" (PDF). Journal de mathématiques pures et appliquées. 63: 187–213.
  29. ^ Weisstein, Eric W. "Mertens Theorem". mathworld.wolfram.com. Retrieved 2024-10-08.
  30. Weisstein, Eric W. "Mertens Constant". mathworld.wolfram.com. Retrieved 2024-11-01.
  31. Pintz, János (1997-04-01). "Very Large Gaps between Consecutive Primes". Journal of Number Theory. 63 (2): 286–301. doi:10.1006/jnth.1997.2081. ISSN 0022-314X.
  32. ^ Conway, John H.; Guy, Richard (1998-03-16). The Book of Numbers. Springer Science & Business Media. ISBN 978-0-387-97993-9.
  33. "Heuristics: Deriving the Wagstaff Mersenne Conjecture". t5k.org. Retrieved 2024-11-01.
  34. Weisstein, Eric W. "Porter's Constant". mathworld.wolfram.com. Retrieved 2024-11-01.
  35. Caves, Carlton M.; Fuchs, Christopher A. (1996). "Quantum information: How much information in a state vector?". The Dilemma of Einstein, Podolsky and Rosen – 60 Years Later. Israel Physical Society. arXiv:quant-ph/9601025. Bibcode:1996quant.ph..1025C. ISBN 9780750303941. OCLC 36922834.
  36. Connallon, Tim; Hodgins, Kathryn A. (October 2021). "Allen Orr and the genetics of adaptation". Evolution. 75 (11): 2624–2640. doi:10.1111/evo.14372. PMID 34606622. S2CID 238357410.
  37. "Eulers Constant". num.math.uni-goettingen.de. Retrieved 2024-10-19.
  38. Waldschmidt, Michel (2023). "Some of the most famous open problems in number theory" (PDF).
  39. ^ See also Sondow, Jonathan (2003). "Criteria for irrationality of Euler's constant". Proceedings of the American Mathematical Society. 131 (11): 3335–3344. arXiv:math.NT/0209070. doi:10.1090/S0002-9939-03-07081-3. S2CID 91176597.
  40. Aptekarev, A. I. (28 February 2009). "On linear forms containing the Euler constant". arXiv:0902.1768 .
  41. Rivoal, Tanguy (2012). "On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant". Michigan Mathematical Journal. 61 (2): 239–254. doi:10.1307/mmj/1339011525. ISSN 0026-2285.
  42. Mahler, Kurt (4 June 1968). "Applications of a theorem by A. B. Shidlovski" (PDF). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 305 (1481): 149–173. Bibcode:1968RSPSA.305..149M. doi:10.1098/rspa.1968.0111. S2CID 123486171.
  43. ^ Ram Murty, M.; Saradha, N. (2010). "Euler–Lehmer constants and a conjecture of Erdos". Journal of Number Theory. 130 (12): 2671–2681. doi:10.1016/j.jnt.2010.07.004. ISSN 0022-314X.
  44. Murty, M. Ram; Zaytseva, Anastasia (2013). "Transcendence of Generalized Euler Constants". The American Mathematical Monthly. 120 (1): 48–54. doi:10.4169/amer.math.monthly.120.01.048. ISSN 0002-9890. JSTOR 10.4169/amer.math.monthly.120.01.048. S2CID 20495981.
  45. Diamond, H. G.; Ford, K. (2008). "Generalized Euler constants". Mathematical Proceedings of the Cambridge Philosophical Society. 145 (1). Cambridge University Press: 27–41. arXiv:math/0703508. Bibcode:2008MPCPS.145...27D. doi:10.1017/S0305004108001187.
  46. Haible, Bruno; Papanikolaou, Thomas (1998). "Fast multiprecision evaluation of series of rational numbers". In Buhler, Joe P. (ed.). Algorithmic Number Theory. Lecture Notes in Computer Science. Vol. 1423. Springer. pp. 338–350. doi:10.1007/bfb0054873. ISBN 9783540691136.
  47. Papanikolaou, T. (1997). Entwurf und Entwicklung einer objektorientierten Bibliothek für algorithmische Zahlentheorie (Thesis) (in German). Universität des Saarlandes.
  48. Weisstein, Eric W. "Euler-Mascheroni Constant Digits". mathworld.wolfram.com. Retrieved 2024-10-19.
  49. ^ Sloane, N. J. A. (ed.). "Sequence A002852 (Continued fraction for Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  50. ^ Brent, Richard P. (1977). "Computation of the Regular Continued Fraction for Euler's Constant". Mathematics of Computation. 31 (139): 771–777. doi:10.2307/2006010. ISSN 0025-5718. JSTOR 2006010.
  51. Weisstein, Eric W. "Euler-Mascheroni Constant Continued Fraction". mathworld.wolfram.com. Retrieved 2024-09-23.
  52. Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2013-12-29), On a continued fraction expansion for Euler's constant, arXiv:1010.1420
  53. Weisstein, Eric W. "Euler-Mascheroni Constant Approximations". mathworld.wolfram.com. Retrieved 2024-10-19.
  54. ^ Krämer, Stefan (2005). Die Eulersche Konstante γ und verwandte Zahlen (in German). University of Göttingen.
  55. Wolf, Marek (2019). "6+infinity new expressions for the Euler-Mascheroni constant". arXiv:1904.09855 . The above sum is real and convergent when zeros ρ {\displaystyle \rho } and complex conjugate ρ ¯ {\displaystyle {\bar {\rho }}} are paired together and summed according to increasing absolute values of the imaginary parts of ρ {\displaystyle \rho } . See formula 11 on page 3. Note the typographical error in the numerator of Wolf's sum over zeros, which should be 2 rather than 1.
  56. Sondow, Jonathan (1998). "An antisymmetric formula for Euler's constant". Mathematics Magazine. 71 (3): 219–220. doi:10.1080/0025570X.1998.11996638. Archived from the original on 2011-06-04. Retrieved 2006-05-29.
  57. ^ Boya, L.J. (2008). "Another relation between π, e, γ and ζ(n)". Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 102 (2): 199–202. Bibcode:2008RvMad.102..199B. doi:10.1007/BF03191819. γ/2 in (10) reflects the residual (finite part) of ζ(1)/2, of course. See formulas 1 and 10.
  58. Sondow, Jonathan (2005). "Double Integrals for Euler's Constant and 4 π {\displaystyle \textstyle {\frac {4}{\pi }}} and an Analog of Hadjicostas's Formula". The American Mathematical Monthly. 112 (1): 61–65. doi:10.2307/30037385. JSTOR 30037385. Retrieved 2024-04-27.
  59. Chen, Chao-Ping (2018). "Ramanujan's formula for the harmonic number". Applied Mathematics and Computation. 317: 121–128. doi:10.1016/j.amc.2017.08.053. ISSN 0096-3003. Retrieved 2024-04-27.
  60. Lodge, A. (1904). "An approximate expression for the value of 1 + 1/2 + 1/3 + ... + 1/r". Messenger of Mathematics. 30: 103–107.
  61. Villarino, Mark B. (2007). "Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number". arXiv:0707.3950 . It would also be interesting to develop an expansion for n! into powers of m, a new Stirling expansion, as it were. See formula 1.8 on page 3.
  62. Mortici, Cristinel (2010). "On the Stirling expansion into negative powers of a triangular number". Math. Commun. 15: 359–364.
  63. Cesàro, E. (1885). "Sur la série harmonique". Nouvelles annales de mathématiques: Journal des candidats aux écoles polytechnique et normale (in French). 4. Carilian-Goeury et Vor Dalmont: 295–296.
  64. Bromwich, Thomas John I'Anson (2005) . An Introduction to the Theory of Infinite Series (PDF) (3rd ed.). United Kingdom: American Mathematical Society. p. 460. See exercise 18.
  65. Whittaker, E.; Watson, G. (2021) . A Course of Modern Analysis (5th ed.). p. 271, 275. doi:10.1017/9781009004091. ISBN 9781316518939. See Examples 12.21 and 12.50 for exercises on the derivation of the integral form 1 0 ln Γ ( z + 1 ) d z {\displaystyle \textstyle \int _{-1}^{0}\ln \Gamma (z+1)\,dz} of the series k = 1 n ζ ( k ) 110 k = ln ( 2 π ) {\displaystyle \textstyle \sum _{k=1}^{n}{\frac {\zeta (k)}{110_{k}}}=\ln({\sqrt {2\pi }})} .
  66. Lagarias 2013, p. 13.
  67. Nelsen, R. B. (1991). "Proof without Words: Sum of Reciprocals of Triangular Numbers". Mathematics Magazine. 64 (3): 167. doi:10.1080/0025570X.1991.11977600.
  68. Edwards, H. M. (1974). Riemann's Zeta Function. Pure and Applied Mathematics, Vol. 58. Academic Press. pp. 67, 159.
  69. Sondow, Jonathan; Zudilin, Wadim (2006). "Euler's constant, q-logarithms, and formulas of Ramanujan and Gosper". The Ramanujan Journal. 12 (2): 225–244. arXiv:math.NT/0304021. doi:10.1007/s11139-006-0075-1. S2CID 1368088.
  70. ^ Sondow, Jonathan (2005). "Double integrals for Euler's constant and log 4 π {\displaystyle \log {\frac {4}{\pi }}} and an analog of Hadjicostas's formula". American Mathematical Monthly. 112 (1): 61–65. arXiv:math.CA/0211148. doi:10.2307/30037385. JSTOR 30037385.
  71. Sondow, Jonathan (1 August 2005a). New Vacca-type rational series for Euler's constant and its 'alternating' analog log 4 π {\displaystyle \log {\frac {4}{\pi }}} . arXiv:math.NT/0508042.
  72. DeTemple, Duane W. (May 1993). "A Quicker Convergence to Euler's Constant". The American Mathematical Monthly. 100 (5): 468–470. doi:10.2307/2324300. ISSN 0002-9890. JSTOR 2324300.
  73. Havil 2003, pp. 75–8.
  74. Blagouchine 2016.
  75. Vacca, G. (1910). "A new analytical expression for the number π and some historical considerations". Bulletin of the American Mathematical Society. 16: 368–369. doi:10.1090/S0002-9904-1910-01919-4.
  76. Glaisher, James Whitbread Lee (1910). "On Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 41: 365–368.
  77. Hardy, G.H. (1912). "Note on Dr. Vacca's series for γ". Q. J. Pure Appl. Math. 43: 215–216.
  78. Vacca, G. (1926). "Nuova serie per la costante di Eulero, C = 0,577...". Rendiconti, Accademia Nazionale dei Lincei, Roma, Classe di Scienze Fisiche". Matematiche e Naturali (in Italian). 6 (3): 19–20.
  79. Kluyver, J.C. (1927). "On certain series of Mr. Hardy". Q. J. Pure Appl. Math. 50: 185–192.
  80. ^ Blagouchine, Iaroslav V. (2016). "Expansions of generalized Euler's constants into the series of polynomials in π and into the formal enveloping series with rational coefficients only". J. Number Theory. 158: 365–396. arXiv:1501.00740. doi:10.1016/j.jnt.2015.06.012.
  81. Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2008-08-04), Vacca-type series for values of the generalized-Euler-constant function and its derivative, arXiv:0808.0410
  82. Berndt, Bruce C. (January 2008). "A fragment on Euler's constant in Ramanujan's lost notebook". South East Asian J. Math. & Math. Sc. 6 (2): 17–22.
  83. ^ Blagouchine, Iaroslav V. (2018). "Three notes on Ser's and Hasse's representations for the zeta-functions". INTEGERS: The Electronic Journal of Combinatorial Number Theory. 18A (#A3): 1–45. arXiv:1606.02044. Bibcode:2016arXiv160602044B. doi:10.5281/zenodo.10581385.
  84. ^ Alabdulmohsin, Ibrahim M. (2018). Summability Calculus. A Comprehensive Theory of Fractional Finite Sums. Springer. pp. 147–8. ISBN 9783319746487.
  85. Sloane, N. J. A. (ed.). "Sequence A302120 (Absolute value of the numerators of a series converging to Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  86. Sloane, N. J. A. (ed.). "Sequence A302121 (Denominators of a series converging to Euler's constant)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  87. Sloane, N. J. A. (ed.). "Sequence A073004 (Decimal expansion of exp(gamma))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  88. Ramaré, Olivier (2022). Excursions in Multiplicative Number Theory. Birkhäuser Advanced Texts: Basel Textbooks. Basel: Birkhäuser/Springer. p. 131. doi:10.1007/978-3-030-73169-4. ISBN 978-3-030-73168-7. MR 4400952. S2CID 247271545.
  89. Sondow, Jonathan (2003). "An infinite product for e via hypergeometric formulas for Euler's constant, γ". arXiv:math.CA/0306008.
  90. Choi, Junesang; Srivastava, H.M. (1 September 2010). "Integral Representations for the Euler–Mascheroni Constant γ". Integral Transforms and Special Functions. 21 (9): 675–690. doi:10.1080/10652461003593294. ISSN 1065-2469. S2CID 123698377.
  91. Oettinger, Ludwig (1862-01-01). "Ueber die richtige Werthbestimmung der Constante des Integrallogarithmus". Journal für die reine und angewandte Mathematik (in German). 60: 375–376. doi:10.1515/crll.1862.60.375. ISSN 1435-5345.
  92. "I. On the calculation of the numerical value of Euler's constant, which Professor Price, of Oxford, calls E". Proceedings of the Royal Society of London. 15: 429–432. 1867-12-31. doi:10.1098/rspl.1866.0100. ISSN 0370-1662.
  93. Fischer, Helmut; Zeller, Karl (1961). "Bernoullische Zahlen und Eulersche Konstante". zbmath.org (in German). Retrieved 2024-10-27.
  94. Knuth, Donald E. (July 1962). "Euler's Constant to 1271 Places". Mathematics of Computation. 16 (79). American Mathematical Society: 275–281. doi:10.2307/2004048. JSTOR 2004048.
  95. Sweeney, Dura W. (1963). "On the computation of Euler's constant". Mathematics of Computation. 17 (82): 170–178. doi:10.1090/S0025-5718-1963-0160308-X. ISSN 0025-5718. S2CID 120162114.
  96. Beyer, W. A.; Waterman, M. S. (1974). "Error Analysis of a Computation of Euler's Constant". Mathematics of Computation. 28 (126): 599–604. doi:10.2307/2005935. ISSN 0025-5718. JSTOR 2005935.
  97. Brent, Richard P.; McMillan, Edwin M. (1980). "Some new algorithms for high-precision computation of Euler's constant". Mathematics of Computation. 34 (149): 305–312. doi:10.1090/S0025-5718-1980-0551307-4. ISSN 0025-5718.
  98. ^ Gourdon, Xavier; Sebah, Pascal (2004). "The Euler constant: γ" (PDF). scipp.ucsc.edu. Retrieved 2024-10-27.
  99. Yee, Alexander J. (7 March 2011). "Large Computations". www.numberworld.org.
  100. ^ Yee, Alexander J. "Records Set by y-cruncher". www.numberworld.org. Retrieved 30 April 2018.
    Yee, Alexander J. "y-cruncher - A Multi-Threaded Pi-Program". www.numberworld.org.
  101. "Euler-Mascheroni Constant". Polymath Collector. 15 February 2020.
  102. Havil 2003, pp. 117–18.
  103. Weisstein, Eric W. "Masser-Gramain Constant". mathworld.wolfram.com. Retrieved 2024-10-19.
  104. Melquiond, Guillaume; Nowak, W. Georg; Zimmermann, Paul. "Numerical approximation of the Masser-Gramain constant to four decimal digits" (PDF). Retrieved 2024-10-03.

Further reading

External links

Leonhard Euler
Categories: