Generalization of natural transformations
In mathematics , specifically in category theory , an extranatural transformation is a generalization of the notion of natural transformation .
Definition
Let
F
:
A
×
B
o
p
×
B
→
D
{\displaystyle F:A\times B^{\mathrm {op} }\times B\rightarrow D}
and
G
:
A
×
C
o
p
×
C
→
D
{\displaystyle G:A\times C^{\mathrm {op} }\times C\rightarrow D}
be two functors of categories.
A family
η
(
a
,
b
,
c
)
:
F
(
a
,
b
,
b
)
→
G
(
a
,
c
,
c
)
{\displaystyle \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c)}
is said to be natural in a and extranatural in b and c if the following holds:
η
(
−
,
b
,
c
)
{\displaystyle \eta (-,b,c)}
is a natural transformation (in the usual sense).
(extranaturality in b )
∀
(
g
:
b
→
b
′
)
∈
M
o
r
B
{\displaystyle \forall (g:b\rightarrow b^{\prime })\in \mathrm {Mor} \,B}
,
∀
a
∈
A
{\displaystyle \forall a\in A}
,
∀
c
∈
C
{\displaystyle \forall c\in C}
the following diagram commutes
F
(
a
,
b
′
,
b
)
→
F
(
1
,
1
,
g
)
F
(
a
,
b
′
,
b
′
)
F
(
1
,
g
,
1
)
↓
η
(
a
,
b
′
,
c
)
↓
F
(
a
,
b
,
b
)
→
η
(
a
,
b
,
c
)
G
(
a
,
c
,
c
)
{\displaystyle {\begin{matrix}F(a,b',b)&\xrightarrow {F(1,1,g)} &F(a,b',b')\\_{F(1,g,1)}\downarrow \qquad &&_{\eta (a,b',c)}\downarrow \qquad \\F(a,b,b)&\xrightarrow {\eta (a,b,c)} &G(a,c,c)\end{matrix}}}
(extranaturality in c )
∀
(
h
:
c
→
c
′
)
∈
M
o
r
C
{\displaystyle \forall (h:c\rightarrow c^{\prime })\in \mathrm {Mor} \,C}
,
∀
a
∈
A
{\displaystyle \forall a\in A}
,
∀
b
∈
B
{\displaystyle \forall b\in B}
the following diagram commutes
F
(
a
,
b
,
b
)
→
η
(
a
,
b
,
c
′
)
G
(
a
,
c
′
,
c
′
)
η
(
a
,
b
,
c
)
↓
G
(
1
,
h
,
1
)
↓
G
(
a
,
c
,
c
)
→
G
(
1
,
1
,
h
)
G
(
a
,
c
,
c
′
)
{\displaystyle {\begin{matrix}F(a,b,b)&\xrightarrow {\eta (a,b,c')} &G(a,c',c')\\_{\eta (a,b,c)}\downarrow \qquad &&_{G(1,h,1)}\downarrow \qquad \\G(a,c,c)&\xrightarrow {G(1,1,h)} &G(a,c,c')\end{matrix}}}
Properties
Extranatural transformations can be used to define wedges and thereby ends (dually co-wedges and co-ends), by setting
F
{\displaystyle F}
(dually
G
{\displaystyle G}
) constant.
Extranatural transformations can be defined in terms of dinatural transformations , of which they are a special case.
See also
References
Eilenberg and Kelly , A generalization of the functorial calculus, J. Algebra 3 366–375 (1966)
^ Fosco Loregian, This is the (co)end, my only (co)friend , arXiv preprint
External links
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑