Misplaced Pages

Gallium arsenide antimonide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from GaAsSb)
Gallium arsenide antimonide
Identifiers
Related compounds
Related compounds Gallium arsenide; Gallium antimonide; Gallium indium arsenide antimonide phosphide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Gallium arsenide antimonide, also known as gallium antimonide arsenide or GaAsSb (GaAs(1-x)Sbx), is a ternary III-V semiconductor compound; x indicates the fractions of arsenic and antimony in the alloy. GaAsSb refers generally to any composition of the alloy. It is an alloy of gallium arsenide (GaAs) and gallium antimonide (GaSb).

Preparation

GaAsSb films have been grown by molecular beam epitaxy (MBE), metalorganic vapor phase epitaxy (MOVPE) and liquid phase epitaxy (LPE) on gallium arsenide, gallium antimonide and indium phosphide substrates. It is often incorporated into layered heterostructures with other III-V compounds.

Thermodynamic Stability

GaAsSb has a miscibility gap at temperatures below 751 °C. This means that intermediate compositions of the alloy below this temperature are thermodynamically unstable and can spontaneously separate into two phases: one GaAs-rich and one GaSb-rich. This limits the compositions of GaAsSb that can be obtained by near-equilibrium growth techniques, such as LPE, to those outside of the miscibility gap. However, compositions of GaAsSb within the miscibility gap can be obtained with non-equilibrium growth techniques, such as MBE and MOVPE. By carefully selecting the growth conditions (e.g., the ratios of precursor gases in MOVPE) and maintaining relatively low temperatures during and after growth, it is possible to obtain compositions of GaAsSb within the miscibility gap that are kinetically stable. For example, this makes it possible to grow GaAsSb with the composition GaAs0.51Sb0.49, which, while normally within the miscibility gap at typical growth temperatures, can exist as a kinetically stable alloy. This composition of GaAsSb is latticed matched to InP and is sometimes used in heterostructures grown on that substrate.

Electronic Properties

Direct bandgap versus composition for GaAsSb.

The bandgap and lattice constant of GaAsSb alloys are between those of pure GaAs (a = 0.565 nm, Eg = 1.42 eV) and GaSb (a = 0.610 nm, Eg = 0.73 eV). Over all compositions, the band gap is direct, like in GaAs and GaSb. Furthermore, the bandgap displays a minimum in composition at approximately x = 0.8 at T = 300 K, reaching a minimum value of Eg = 0.67 eV, which is slightly below that of pure GaSb.

Applications

GaAsSb has been extensively studied for use in heterojunction bipolar transistors. It has also been lattice-matched with InGaAs on InP to create and study a two-dimensional electron gas.

A GaAsSb/GaAs-based heterostructure was used to make a near-infrared photodiode with peak responsivity centered at 1.3 μm.

GaAsSb can be incorporated into III-V–based multi-junction solar cells to reduce the tunneling distance and increase the tunneling current between adjacent cells.

References

  1. ^ Cherng, M. J., Stringfellow, G. G., Cohen, R. M. (1984). "Organometallic vapor phase epitaxial growth of GaAs0.5Sb0.5". Applied Physics Letters. 44 (7): 677–679. Bibcode:1984ApPhL..44..677C. doi:10.1063/1.94874.
  2. Madelung, O., Rössler, U., Schulz, M., eds. (2002). "GaAs(1-x)Sb(x), physical properties". Group IV Elements, IV-IV and III-V Compounds. Part b - Electronic, Transport, Optical and Other Properties. Landolt-Börnstein - Group III Condensed Matter. Vol. b. Springer-Verlag. pp. 1–13. doi:10.1007/10832182_25. ISBN 978-3-540-42876-3.
  3. Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. (2001). "Band parameters for III–V compound semiconductors and their alloys". Journal of Applied Physics. 89 (11): 5815–5875. Bibcode:2001JAP....89.5815V. doi:10.1063/1.1368156.
  4. Bolognesi, C. R., Dvorak, M. M. W., Yeo, P., Xu, X. G., Watkins, S. P. (2001). "InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs". IEEE Transactions on Electron Devices. 48 (11): 2631–2639. Bibcode:2001ITED...48.2631B. doi:10.1109/16.960389.
  5. Ikossi-Anastasiou, K. (1993). "GaAsSb for heterojunction bipolar transistors". IEEE Transactions on Electron Devices. 40 (5): 878–884. Bibcode:1993ITED...40..878I. doi:10.1109/16.210193.
  6. Detz, H., Silvano De Sousa, J., Leonhardt, H., Klang, P., Zederbauer, T., Andrews, A. M., Schrenk, W., Smoliner, J., Strasser, G. (2014). "InGaAs/GaAsSb based two-dimensional electron gases". Journal of Vacuum Science & Technology B. 32 (2): 02C104. Bibcode:2014JVSTB..32bC104D. doi:10.1116/1.4863299.
  7. Sun, X., Wang, S., Hsu, J. S., Sidhu, R., Zheng, X. G., Li, X., Campbell, J. C., Holmes, A. L. (2002). "GaAsSb: a novel material for near infrared photodetectors on GaAs substrates". IEEE Journal of Selected Topics in Quantum Electronics. 8 (4): 817–822. Bibcode:2002IJSTQ...8..817S. doi:10.1109/JSTQE.2002.800848. ISSN 1558-4542.
  8. Klem, J. F., Zolper, J. C. (1997), Semiconductor tunnel junction with enhancement layer, retrieved 27 December 2023.

External links

Salts and covalent derivatives of the antimonide ion
-SbH
SbH3
+H
He
Li3Sb Be ?BSb R3Sb SbN -SbO
various
-SbF4
-SbF6
Ne
Na3Sb
NaSb3
Mg3Sb2 AlSb Si +P +S
-SbS3
-SbS4
+Cl4
+Cl2
-SbCl6
Ar
?K3Sb Ca ScSb Ti V CrSb MnSb
Mn2Sb
Fe2Sb
FeSb2
CoSb
CoSb3
NiSb
Ni3Sb
NiSb2
CuSb
Cu2Sb
Cu3Sb
Cu5Sb
ZnSb
Zn3Sb2
Zn4Sb3
GaSb GeSb AsSb
-As1-xSbx
+Se +Br
+Br2
Kr
Rb3Sb
RbSb3
SrSb3 YSb ZrSb Nb3Sb Mo Tc Ru RhSb various Ag1-xSbx
Ag3Sb
CdSb
Cd3Sb2
InSb SnSb Sb
Sb4
-Sb
+Te +I Xe
Cs3Sb
Cs4Sb2
Ba3Sb2
BaSb3
* LuSb ?HfSb ?TaSb W Re Os Ir PtSb
Pt3Sb
PtSb2
Pt4Sb3
AuSb
AuSb2
Hg TlSb PbSb BiSb
Bi1−xSbx

Bi2Sb2
Po At Rn
Fr3Sb Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaSb ?CeSb PrSb NdSb PmSb SmSb Eu5Sb3
Eu11Sb10
Eu2Sb3
GdSb TbSb DySb HoSb
HoSb2
ErSb TmSb
TmSb
YbSb
** Ac ?ThSb
ThSb2
Th3Sb4
Pa U NpSb Pu AmSb CmSb BkSb
?BkSb
Cf Es Fm Md No
Gallium compounds
Gallium(−V)
Gallium(I)
Gallium(II)
Gallium(I,III)
Gallium(III)
Organogallium(III) compounds
  • Ga(C5H7O2)3
  • Ga(CH3)3
  • Ga(C2H5)3
  • Arsenides
    Binary arsenides
    AsH3
    +H
    He
    LiAs Be BAs C +N +O F Ne
    Na3As Mg AlAs -Si P S +Cl Ar
    K CaAs Sc Ti V Cr MnAs Fe CoAs Ni Cu Zn3As2 GaAs -Ge As Se +Br Kr
    Rb Sr YAs Zr Nb MoAs2 Tc Ru Rh PdAs2 Ag Cd3As2 InAs -Sn Sb +Te +I Xe
    Cs Ba * Lu Hf TaAs WAs2 Re Os Ir Pt Au Hg Tl Pb BiAs Po At Rn
    Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
    * La Ce PrAs Nd Pm SmAs Eu Gd Tb DyAs HoAs Er Tm Yb
    ** Ac Th Pa U NpAs
    NpAs2
    PuAs Am Cm Bk Cf Es Fm Md No
    Ternary arsenides
    Quaternary arsenides
    Quinary arsenides
    See also
    Antimony compounds
    Antimonides
    Sb(III)
    Organoantimony(III) compounds
    Sb(III,V)
    Sb(V)
    Organoantimony(V) compounds
    Categories: