(Redirected from Hartle-Thorne metric )
Approximate solution to Einstein's field equations
General relativity
G
μ
ν
+
Λ
g
μ
ν
=
κ
T
μ
ν
{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Fundamental concepts
Phenomena
Equations
Formalisms
Advanced theory
Solutions
Scientists
The Hartle–Thorne metric is an approximate solution of the vacuum Einstein field equations of general relativity that describes the exterior of a slowly and rigidly rotating, stationary and axially symmetric body.
The metric was found by James Hartle and Kip Thorne in the 1960s to study the spacetime outside neutron stars , white dwarfs and supermassive stars . It can be shown that it is an approximation to the Kerr metric (which describes a rotating black hole) when the quadrupole moment is set as
q
=
−
a
2
a
M
3
{\displaystyle q=-a^{2}aM^{3}}
, which is the correct value for a black hole but not, in general, for other astrophysical objects.
Metric
Up to second order in the angular momentum
J
{\displaystyle J}
, mass
M
{\displaystyle M}
and quadrupole moment
q
{\displaystyle q}
, the
metric in spherical coordinates is given by
g
t
t
=
−
(
1
−
2
M
r
+
2
q
r
3
P
2
+
2
M
q
r
4
P
2
+
2
q
2
r
6
P
2
2
−
2
3
J
2
r
4
(
2
P
2
+
1
)
)
,
g
t
ϕ
=
−
2
J
r
sin
2
θ
,
g
r
r
=
1
+
2
M
r
+
4
M
2
r
2
−
2
q
P
2
r
3
−
10
M
q
P
2
r
4
+
1
12
q
2
(
8
P
2
2
−
16
P
2
+
77
)
r
6
+
2
J
2
(
8
P
2
−
1
)
r
4
,
g
θ
θ
=
r
2
(
1
−
2
q
P
2
r
3
−
5
M
q
P
2
r
4
+
1
36
q
2
(
44
P
2
2
+
8
P
2
−
43
)
r
6
+
J
2
P
2
r
4
)
,
g
ϕ
ϕ
=
r
2
sin
2
θ
(
1
−
2
q
P
2
r
3
−
5
M
q
P
2
r
4
+
1
36
q
2
(
44
P
2
2
+
8
P
2
−
43
)
r
6
+
J
2
P
2
r
4
)
,
{\displaystyle {\begin{aligned}g_{tt}&=-\left(1-{\frac {2M}{r}}+{\frac {2q}{r^{3}}}P_{2}+{\frac {2Mq}{r^{4}}}P_{2}+{\frac {2q^{2}}{r^{6}}}P_{2}^{2}-{\frac {2}{3}}{\frac {J^{2}}{r^{4}}}(2P_{2}+1)\right),\\g_{t\phi }&=-{\frac {2J}{r}}\sin ^{2}\theta ,\\g_{rr}&=1+{\frac {2M}{r}}+{\frac {4M^{2}}{r^{2}}}-{\frac {2qP_{2}}{r^{3}}}-{\frac {10MqP_{2}}{r^{4}}}+{\frac {1}{12}}{\frac {q^{2}\left(8P_{2}^{2}-16P_{2}+77\right)}{r^{6}}}+{\frac {2J^{2}(8P_{2}-1)}{r^{4}}},\\g_{\theta \theta }&=r^{2}\left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\\g_{\phi \phi }&=r^{2}\sin ^{2}\theta \left(1-{\frac {2qP_{2}}{r^{3}}}-{\frac {5MqP_{2}}{r^{4}}}+{\frac {1}{36}}{\frac {q^{2}\left(44P_{2}^{2}+8P_{2}-43\right)}{r^{6}}}+{\frac {J^{2}P_{2}}{r^{4}}}\right),\end{aligned}}}
where
P
2
=
3
cos
2
θ
−
1
2
.
{\displaystyle P_{2}={\frac {3\cos ^{2}\theta -1}{2}}.}
See also
References
^ Frutos Alfaro, Francisco; Soffel, Michael (2017). "On the Post-Linear Quadrupole-Quadrupole Metric". Revista de Matemática: Teoría y Aplicaciones . 24 (2): 239. arXiv :1507.04264 . doi :10.15517/rmta.v24i2.29856 . S2CID 119159263 .
Hartle, James B.; Thorne, Kip S. (1968). "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars" . The Astrophysical Journal . 153 : 807. Bibcode :1968ApJ...153..807H . doi :10.1086/149707 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑