Misplaced Pages

Hermitian wavelet

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Family of continuous wavelets
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Hermitian wavelet" – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this message)
This article's tone or style may not reflect the encyclopedic tone used on Misplaced Pages. See Misplaced Pages's guide to writing better articles for suggestions. (July 2022) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Hermitian wavelets are a family of discrete and continuous wavelets used in the constant and discrete Hermite wavelet transforms. The n th {\displaystyle n^{\textrm {th}}} Hermitian wavelet is defined as the normalized n th {\displaystyle n^{\textrm {th}}} derivative of a Gaussian distribution for each positive n {\displaystyle n} : Ψ n ( x ) = ( 2 n ) n 2 c n He n ( x ) e 1 2 x 2 , {\displaystyle \Psi _{n}(x)=(2n)^{-{\frac {n}{2}}}c_{n}\operatorname {He} _{n}\left(x\right)e^{-{\frac {1}{2}}x^{2}},} where He n ( x ) {\displaystyle \operatorname {He} _{n}(x)} denotes the n th {\displaystyle n^{\textrm {th}}} probabilist's Hermite polynomial. Each normalization coefficient c n {\displaystyle c_{n}} is given by c n = ( n 1 2 n Γ ( n + 1 2 ) ) 1 2 = ( n 1 2 n π 2 n ( 2 n 1 ) ! ! ) 1 2 n N . {\displaystyle c_{n}=\left(n^{{\frac {1}{2}}-n}\Gamma \left(n+{\frac {1}{2}}\right)\right)^{-{\frac {1}{2}}}=\left(n^{{\frac {1}{2}}-n}{\sqrt {\pi }}2^{-n}(2n-1)!!\right)^{-{\frac {1}{2}}}\quad n\in \mathbb {N} .} The function Ψ L ρ , μ ( , ) {\displaystyle \Psi \in L_{\rho ,\mu }(-\infty ,\infty )} is said to be an admissible Hermite wavelet if it satisfies the admissibility condition:

C Ψ = n = 0 Ψ ^ ( n ) 2 n < {\displaystyle C_{\Psi }=\sum _{n=0}^{\infty }{\frac {\|{\hat {\Psi }}(n)\|^{2}}{\|n\|}}<\infty }

where Ψ ^ ( n ) {\displaystyle {\hat {\Psi }}(n)} are the terms of the Hermite transform of Ψ {\displaystyle \Psi } .

In computer vision and image processing, Gaussian derivative operators of different orders are frequently used as a basis for expressing various types of visual operations; see scale space and N-jet.

Examples

The first three derivatives of the Gaussian function with μ = 0 , σ = 1 {\displaystyle \mu =0,\;\sigma =1} : f ( t ) = π 1 / 4 e ( t 2 / 2 ) , {\displaystyle f(t)=\pi ^{-1/4}e^{(-t^{2}/2)},} are: f ( t ) = π 1 / 4 t e ( t 2 / 2 ) , f ( t ) = π 1 / 4 ( t 2 1 ) e ( t 2 / 2 ) , f ( 3 ) ( t ) = π 1 / 4 ( 3 t t 3 ) e ( t 2 / 2 ) , {\displaystyle {\begin{aligned}f'(t)&=-\pi ^{-1/4}te^{(-t^{2}/2)},\\f''(t)&=\pi ^{-1/4}(t^{2}-1)e^{(-t^{2}/2)},\\f^{(3)}(t)&=\pi ^{-1/4}(3t-t^{3})e^{(-t^{2}/2)},\end{aligned}}} and their L 2 {\displaystyle L^{2}} norms f = 2 / 2 , f = 3 / 2 , f ( 3 ) = 30 / 4 {\displaystyle \lVert f'\rVert ={\sqrt {2}}/2,\lVert f''\rVert ={\sqrt {3}}/2,\lVert f^{(3)}\rVert ={\sqrt {30}}/4} .

Normalizing the derivatives yields three Hermitian wavelets: Ψ 1 ( t ) = 2 π 1 / 4 t e ( t 2 / 2 ) , Ψ 2 ( t ) = 2 3 3 π 1 / 4 ( 1 t 2 ) e ( t 2 / 2 ) , Ψ 3 ( t ) = 2 15 30 π 1 / 4 ( t 3 3 t ) e ( t 2 / 2 ) . {\displaystyle {\begin{aligned}\Psi _{1}(t)&={\sqrt {2}}\pi ^{-1/4}te^{(-t^{2}/2)},\\\Psi _{2}(t)&={\frac {2}{3}}{\sqrt {3}}\pi ^{-1/4}(1-t^{2})e^{(-t^{2}/2)},\\\Psi _{3}(t)&={\frac {2}{15}}{\sqrt {30}}\pi ^{-1/4}(t^{3}-3t)e^{(-t^{2}/2)}.\end{aligned}}}

See also

References

  1. Brackx, F.; De Schepper, H.; De Schepper, N.; Sommen, F. (2008-02-01). "Hermitian Clifford-Hermite wavelets: an alternative approach". Bulletin of the Belgian Mathematical Society, Simon Stevin. 15 (1). doi:10.36045/bbms/1203692449. ISSN 1370-1444.
  2. "Continuous and Discrete Wavelet Transforms Associated with Hermite Transform". International Journal of Analysis and Applications. 2020. doi:10.28924/2291-8639-18-2020-531.
  3. Wah, Benjamin W., ed. (2007-03-15). Wiley Encyclopedia of Computer Science and Engineering (1 ed.). Wiley. doi:10.1002/9780470050118.ecse609. ISBN 978-0-471-38393-2.

External links

Category: