Family of continuous wavelets
Hermitian wavelets are a family of discrete and continuous wavelets used in the constant and discrete Hermite wavelet transforms. The
n
th
{\displaystyle n^{\textrm {th}}}
Hermitian wavelet is defined as the normalized
n
th
{\displaystyle n^{\textrm {th}}}
derivative of a Gaussian distribution for each positive
n
{\displaystyle n}
:
Ψ
n
(
x
)
=
(
2
n
)
−
n
2
c
n
He
n
(
x
)
e
−
1
2
x
2
,
{\displaystyle \Psi _{n}(x)=(2n)^{-{\frac {n}{2}}}c_{n}\operatorname {He} _{n}\left(x\right)e^{-{\frac {1}{2}}x^{2}},}
where
He
n
(
x
)
{\displaystyle \operatorname {He} _{n}(x)}
denotes the
n
th
{\displaystyle n^{\textrm {th}}}
probabilist's Hermite polynomial . Each normalization coefficient
c
n
{\displaystyle c_{n}}
is given by
c
n
=
(
n
1
2
−
n
Γ
(
n
+
1
2
)
)
−
1
2
=
(
n
1
2
−
n
π
2
−
n
(
2
n
−
1
)
!
!
)
−
1
2
n
∈
N
.
{\displaystyle c_{n}=\left(n^{{\frac {1}{2}}-n}\Gamma \left(n+{\frac {1}{2}}\right)\right)^{-{\frac {1}{2}}}=\left(n^{{\frac {1}{2}}-n}{\sqrt {\pi }}2^{-n}(2n-1)!!\right)^{-{\frac {1}{2}}}\quad n\in \mathbb {N} .}
The function
Ψ
∈
L
ρ
,
μ
(
−
∞
,
∞
)
{\displaystyle \Psi \in L_{\rho ,\mu }(-\infty ,\infty )}
is said to be an admissible Hermite wavelet if it satisfies the admissibility condition:
C
Ψ
=
∑
n
=
0
∞
‖
Ψ
^
(
n
)
‖
2
‖
n
‖
<
∞
{\displaystyle C_{\Psi }=\sum _{n=0}^{\infty }{\frac {\|{\hat {\Psi }}(n)\|^{2}}{\|n\|}}<\infty }
where
Ψ
^
(
n
)
{\displaystyle {\hat {\Psi }}(n)}
are the terms of the Hermite transform of
Ψ
{\displaystyle \Psi }
.
In computer vision and image processing , Gaussian derivative operators of different orders are frequently used as a basis for expressing various types of visual operations; see scale space and N-jet .
Examples
The first three derivatives of the Gaussian function with
μ
=
0
,
σ
=
1
{\displaystyle \mu =0,\;\sigma =1}
:
f
(
t
)
=
π
−
1
/
4
e
(
−
t
2
/
2
)
,
{\displaystyle f(t)=\pi ^{-1/4}e^{(-t^{2}/2)},}
are:
f
′
(
t
)
=
−
π
−
1
/
4
t
e
(
−
t
2
/
2
)
,
f
″
(
t
)
=
π
−
1
/
4
(
t
2
−
1
)
e
(
−
t
2
/
2
)
,
f
(
3
)
(
t
)
=
π
−
1
/
4
(
3
t
−
t
3
)
e
(
−
t
2
/
2
)
,
{\displaystyle {\begin{aligned}f'(t)&=-\pi ^{-1/4}te^{(-t^{2}/2)},\\f''(t)&=\pi ^{-1/4}(t^{2}-1)e^{(-t^{2}/2)},\\f^{(3)}(t)&=\pi ^{-1/4}(3t-t^{3})e^{(-t^{2}/2)},\end{aligned}}}
and their
L
2
{\displaystyle L^{2}}
norms
‖
f
′
‖
=
2
/
2
,
‖
f
″
‖
=
3
/
2
,
‖
f
(
3
)
‖
=
30
/
4
{\displaystyle \lVert f'\rVert ={\sqrt {2}}/2,\lVert f''\rVert ={\sqrt {3}}/2,\lVert f^{(3)}\rVert ={\sqrt {30}}/4}
.
Normalizing the derivatives yields three Hermitian wavelets:
Ψ
1
(
t
)
=
2
π
−
1
/
4
t
e
(
−
t
2
/
2
)
,
Ψ
2
(
t
)
=
2
3
3
π
−
1
/
4
(
1
−
t
2
)
e
(
−
t
2
/
2
)
,
Ψ
3
(
t
)
=
2
15
30
π
−
1
/
4
(
t
3
−
3
t
)
e
(
−
t
2
/
2
)
.
{\displaystyle {\begin{aligned}\Psi _{1}(t)&={\sqrt {2}}\pi ^{-1/4}te^{(-t^{2}/2)},\\\Psi _{2}(t)&={\frac {2}{3}}{\sqrt {3}}\pi ^{-1/4}(1-t^{2})e^{(-t^{2}/2)},\\\Psi _{3}(t)&={\frac {2}{15}}{\sqrt {30}}\pi ^{-1/4}(t^{3}-3t)e^{(-t^{2}/2)}.\end{aligned}}}
See also
References
Brackx, F.; De Schepper, H.; De Schepper, N.; Sommen, F. (2008-02-01). "Hermitian Clifford-Hermite wavelets: an alternative approach" . Bulletin of the Belgian Mathematical Society, Simon Stevin . 15 (1). doi :10.36045/bbms/1203692449 . ISSN 1370-1444 .
"Continuous and Discrete Wavelet Transforms Associated with Hermite Transform" . International Journal of Analysis and Applications . 2020. doi :10.28924/2291-8639-18-2020-531 .
Wah, Benjamin W., ed. (2007-03-15). Wiley Encyclopedia of Computer Science and Engineering (1 ed.). Wiley. doi :10.1002/9780470050118.ecse609 . ISBN 978-0-471-38393-2 .
External links
Category :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑