Misplaced Pages

Indefinite product

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical Concept

In mathematics, the indefinite product operator is the inverse operator of Q ( f ( x ) ) = f ( x + 1 ) f ( x ) {\textstyle Q(f(x))={\frac {f(x+1)}{f(x)}}} . It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.

Thus

Q ( x f ( x ) ) = f ( x ) . {\displaystyle Q\left(\prod _{x}f(x)\right)=f(x)\,.}

More explicitly, if x f ( x ) = F ( x ) {\textstyle \prod _{x}f(x)=F(x)} , then

F ( x + 1 ) F ( x ) = f ( x ) . {\displaystyle {\frac {F(x+1)}{F(x)}}=f(x)\,.}

If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.

Period rule

If T {\displaystyle T} is a period of function f ( x ) {\displaystyle f(x)} then

x f ( T x ) = C f ( T x ) x 1 {\displaystyle \prod _{x}f(Tx)=Cf(Tx)^{x-1}}

Connection to indefinite sum

Indefinite product can be expressed in terms of indefinite sum:

x f ( x ) = exp ( x ln f ( x ) ) {\displaystyle \prod _{x}f(x)=\exp \left(\sum _{x}\ln f(x)\right)}

Alternative usage

Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given. e.g.

k = 1 n f ( k ) {\displaystyle \prod _{k=1}^{n}f(k)} .

Rules

x f ( x ) g ( x ) = x f ( x ) x g ( x ) {\displaystyle \prod _{x}f(x)g(x)=\prod _{x}f(x)\prod _{x}g(x)}
x f ( x ) a = ( x f ( x ) ) a {\displaystyle \prod _{x}f(x)^{a}=\left(\prod _{x}f(x)\right)^{a}}
x a f ( x ) = a x f ( x ) {\displaystyle \prod _{x}a^{f(x)}=a^{\sum _{x}f(x)}}

List of indefinite products

This is a list of indefinite products x f ( x ) {\textstyle \prod _{x}f(x)} . Not all functions have an indefinite product which can be expressed in elementary functions.

x a = C a x {\displaystyle \prod _{x}a=Ca^{x}}
x x = C Γ ( x ) {\displaystyle \prod _{x}x=C\,\Gamma (x)}
x x + 1 x = C x {\displaystyle \prod _{x}{\frac {x+1}{x}}=Cx}
x x + a x = C Γ ( x + a ) Γ ( x ) {\displaystyle \prod _{x}{\frac {x+a}{x}}={\frac {C\,\Gamma (x+a)}{\Gamma (x)}}}
x x a = C Γ ( x ) a {\displaystyle \prod _{x}x^{a}=C\,\Gamma (x)^{a}}
x a x = C a x Γ ( x ) {\displaystyle \prod _{x}ax=Ca^{x}\Gamma (x)}
x a x = C a x 2 ( x 1 ) {\displaystyle \prod _{x}a^{x}=Ca^{{\frac {x}{2}}(x-1)}}
x a 1 x = C a Γ ( x ) Γ ( x ) {\displaystyle \prod _{x}a^{\frac {1}{x}}=Ca^{\frac {\Gamma '(x)}{\Gamma (x)}}}
x x x = C e ζ ( 1 , x ) ζ ( 1 ) = C e ψ ( 2 ) ( z ) + z 2 z 2 z 2 ln ( 2 π ) = C K ( x ) {\displaystyle \prod _{x}x^{x}=C\,e^{\zeta ^{\prime }(-1,x)-\zeta ^{\prime }(-1)}=C\,e^{\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln(2\pi )}=C\,\operatorname {K} (x)}
(see K-function)
x Γ ( x ) = C Γ ( x ) x 1 K ( x ) = C Γ ( x ) x 1 e z 2 ln ( 2 π ) z 2 z 2 ψ ( 2 ) ( z ) = C G ( x ) {\displaystyle \prod _{x}\Gamma (x)={\frac {C\,\Gamma (x)^{x-1}}{\operatorname {K} (x)}}=C\,\Gamma (x)^{x-1}e^{{\frac {z}{2}}\ln(2\pi )-{\frac {z^{2}-z}{2}}-\psi ^{(-2)}(z)}=C\,\operatorname {G} (x)}
(see Barnes G-function)
x sexp a ( x ) = C ( sexp a ( x ) ) sexp a ( x ) ( ln a ) x {\displaystyle \prod _{x}\operatorname {sexp} _{a}(x)={\frac {C\,(\operatorname {sexp} _{a}(x))'}{\operatorname {sexp} _{a}(x)(\ln a)^{x}}}}
(see super-exponential function)
x x + a = C Γ ( x + a ) {\displaystyle \prod _{x}x+a=C\,\Gamma (x+a)}
x a x + b = C a x Γ ( x + b a ) {\displaystyle \prod _{x}ax+b=C\,a^{x}\Gamma \left(x+{\frac {b}{a}}\right)}
x a x 2 + b x = C a x Γ ( x ) Γ ( x + b a ) {\displaystyle \prod _{x}ax^{2}+bx=C\,a^{x}\Gamma (x)\Gamma \left(x+{\frac {b}{a}}\right)}
x x 2 + 1 = C Γ ( x i ) Γ ( x + i ) {\displaystyle \prod _{x}x^{2}+1=C\,\Gamma (x-i)\Gamma (x+i)}
x x + 1 x = C Γ ( x i ) Γ ( x + i ) Γ ( x ) {\displaystyle \prod _{x}x+{\frac {1}{x}}={\frac {C\,\Gamma (x-i)\Gamma (x+i)}{\Gamma (x)}}}
x csc x sin ( x + 1 ) = C sin x {\displaystyle \prod _{x}\csc x\sin(x+1)=C\sin x}
x sec x cos ( x + 1 ) = C cos x {\displaystyle \prod _{x}\sec x\cos(x+1)=C\cos x}
x cot x tan ( x + 1 ) = C tan x {\displaystyle \prod _{x}\cot x\tan(x+1)=C\tan x}
x tan x cot ( x + 1 ) = C cot x {\displaystyle \prod _{x}\tan x\cot(x+1)=C\cot x}

See also

References

  1. Algorithms for Nonlinear Higher Order Difference Equations, Manuel Kauers

Further reading

External links

Categories: