Misplaced Pages

Kaniadakis distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with the K-distribution of probability distributions.
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Kaniadakis distribution" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)

In statistics, a Kaniadakis distribution (also known as κ-distribution) is a statistical distribution that emerges from the Kaniadakis statistics. There are several families of Kaniadakis distributions related to different constraints used in the maximization of the Kaniadakis entropy, such as the κ-Exponential distribution, κ-Gaussian distribution, Kaniadakis κ-Gamma distribution and κ-Weibull distribution. The κ-distributions have been applied for modeling a vast phenomenology of experimental statistical distributions in natural or artificial complex systems, such as, in epidemiology, quantum statistics, in astrophysics and cosmology, in geophysics, in economy, in machine learning.

The κ-distributions are written as function of the κ-deformed exponential, taking the form

f i = exp κ ( β E i + β μ ) {\displaystyle f_{i}=\exp _{\kappa }(-\beta E_{i}+\beta \mu )}

enables the power-law description of complex systems following the consistent κ-generalized statistical theory., where exp κ ( x ) = ( 1 + κ 2 x 2 + κ x ) 1 / κ {\displaystyle \exp _{\kappa }(x)=({\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x)^{1/\kappa }} is the Kaniadakis κ-exponential function.

The κ-distribution becomes the common Boltzmann distribution at low energies, while it has a power-law tail at high energies, the feature of high interest of many researchers.

List of κ-statistical distributions

Supported on the whole real line

Plot of the κ-Gaussian distribution for typical κ-values. The case κ=0 corresponds to the normal distribution.
  • The Kaniadakis Gaussian distribution, also called the κ-Gaussian distribution. The normal distribution is a particular case when κ 0. {\displaystyle \kappa \rightarrow 0.}
  • The Kaniadakis double exponential distribution, as known as Kaniadakis κ-double exponential distribution or κ-Laplace distribution. The Laplace distribution is a particular case when κ 0. {\displaystyle \kappa \rightarrow 0.}

Supported on semi-infinite intervals, usually
Plot of the κ-Gamma distribution for typical κ-values.

Common Kaniadakis distributions

κ-Exponential distribution

Main article: Kaniadakis Exponential distribution

κ-Gaussian distribution

Main article: Kaniadakis Gaussian distribution

κ-Gamma distribution

Main article: Kaniadakis Gamma distribution

κ-Weibull distribution

Main article: Kaniadakis Weibull distribution

κ-Logistic distribution

Main article: Kaniadakis Logistic distribution

κ-Erlang distribution

Main article: Kaniadakis Erlang distribution

κ-Distribution Type IV

Continuous probability distribution
κ-Distribution Type IV
Probability density functionPlot of the κ-Distribution Type IV for typical κ-values, and α = β = 1 {\displaystyle \alpha =\beta =1} .
Cumulative distribution function
Parameters 0 κ < 1 {\displaystyle 0\leq \kappa <1}
α > 0 {\displaystyle \alpha >0} shape (real)
β > 0 {\displaystyle \beta >0} rate (real)
Support x [ 0 , + ) {\displaystyle x\in [0,+\infty )}
PDF α κ ( 2 κ β ) 1 / κ ( 1 κ β x α 1 + κ 2 β 2 x 2 α ) x 1 + α / κ exp κ ( β x α ) {\displaystyle {\frac {\alpha }{\kappa }}(2\kappa \beta )^{1/\kappa }\left(1-{\frac {\kappa \beta x^{\alpha }}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\right)x^{-1+\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}
CDF ( 2 κ β ) 1 / κ x α / κ exp κ ( β x α ) {\displaystyle (2\kappa \beta )^{1/\kappa }x^{\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}
Method of moments ( 2 κ β ) m / α 1 + κ m 2 α Γ ( 1 κ + m α ) Γ ( 1 m 2 α ) Γ ( 1 κ + m 2 α ) {\displaystyle {\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{2\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{\alpha }}{\Big )}\Gamma {\Big (}1-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}}

The Kaniadakis distribution of Type IV (or κ-Distribution Type IV) is a three-parameter family of continuous statistical distributions.

The κ-Distribution Type IV distribution has the following probability density function:

f κ ( x ) = α κ ( 2 κ β ) 1 / κ ( 1 κ β x α 1 + κ 2 β 2 x 2 α ) x 1 + α / κ exp κ ( β x α ) {\displaystyle f_{_{\kappa }}(x)={\frac {\alpha }{\kappa }}(2\kappa \beta )^{1/\kappa }\left(1-{\frac {\kappa \beta x^{\alpha }}{\sqrt {1+\kappa ^{2}\beta ^{2}x^{2\alpha }}}}\right)x^{-1+\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}

valid for x 0 {\displaystyle x\geq 0} , where 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} is the entropic index associated with the Kaniadakis entropy, β > 0 {\displaystyle \beta >0} is the scale parameter, and α > 0 {\displaystyle \alpha >0} is the shape parameter.

The cumulative distribution function of κ-Distribution Type IV assumes the form:

F κ ( x ) = ( 2 κ β ) 1 / κ x α / κ exp κ ( β x α ) {\displaystyle F_{\kappa }(x)=(2\kappa \beta )^{1/\kappa }x^{\alpha /\kappa }\exp _{\kappa }(-\beta x^{\alpha })}

The κ-Distribution Type IV does not admit a classical version, since the probability function and its cumulative reduces to zero in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

Its moment of order m {\displaystyle m} given by

E [ X m ] = ( 2 κ β ) m / α 1 + κ m 2 α Γ ( 1 κ + m α ) Γ ( 1 m 2 α ) Γ ( 1 κ + m 2 α ) {\displaystyle \operatorname {E} ={\frac {(2\kappa \beta )^{-m/\alpha }}{1+\kappa {\frac {m}{2\alpha }}}}{\frac {\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{\alpha }}{\Big )}\Gamma {\Big (}1-{\frac {m}{2\alpha }}{\Big )}}{\Gamma {\Big (}{\frac {1}{\kappa }}+{\frac {m}{2\alpha }}{\Big )}}}}

The moment of order m {\displaystyle m} of the κ-Distribution Type IV is finite for m < 2 α {\displaystyle m<2\alpha } .

See also

References

  1. ^ Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743. Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  2. Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. arXiv:2012.00629. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996. PMID 33203913.
  3. Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. (2011). "Generalized quantum entropies". Physics Letters A. 375 (35): 3119–3123. Bibcode:2011PhLA..375.3119S. doi:10.1016/j.physleta.2011.07.001.
  4. Ourabah, Kamel; Tribeche, Mouloud (2014-06-24). "Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics". Physical Review E. 89 (6): 062130. Bibcode:2014PhRvE..89f2130O. doi:10.1103/PhysRevE.89.062130. ISSN 1539-3755. PMID 25019747.
  5. Lourek, Imene; Tribeche, Mouloud (2017). "Thermodynamic properties of the blackbody radiation: A Kaniadakis approach". Physics Letters A. 381 (5): 452–456. Bibcode:2017PhLA..381..452L. doi:10.1016/j.physleta.2016.12.019.
  6. Carvalho, J. C.; do Nascimento, J. D.; Silva, R.; De Medeiros, J. R. (2009-05-01). "Non-Gaussian Statistics and Stellar Rotational Velocities of Main-Sequence Field Stars". The Astrophysical Journal. 696 (1): L48–L51. arXiv:0903.0868. Bibcode:2009ApJ...696L..48C. doi:10.1088/0004-637X/696/1/L48. ISSN 0004-637X. S2CID 17161421.
  7. Abreu, Everton M.C.; Ananias Neto, Jorge; Mendes, Albert C.R.; de Paula, Rodrigo M. (2019). "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics". Chaos, Solitons & Fractals. 118: 307–310. arXiv:1808.01891. Bibcode:2019CSF...118..307A. doi:10.1016/j.chaos.2018.11.033. S2CID 119207713.
  8. Soares, Bráulio B.; Barboza, Edésio M.; Abreu, Everton M.C.; Neto, Jorge Ananias (2019). "Non-Gaussian thermostatistical considerations upon the Saha equation". Physica A: Statistical Mechanics and Its Applications. 532: 121590. arXiv:1901.01839. Bibcode:2019PhyA..53221590S. doi:10.1016/j.physa.2019.121590. S2CID 119539402.
  9. Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881. Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
  10. da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. S2CID 234063959.
  11. da Silva, Sérgio Luiz E. F.; Carvalho, Pedro Tiago C.; de Araújo, João M.; Corso, Gilberto (2020-05-27). "Full-waveform inversion based on Kaniadakis statistics". Physical Review E. 101 (5): 053311. Bibcode:2020PhRvE.101e3311D. doi:10.1103/PhysRevE.101.053311. ISSN 2470-0045. PMID 32575242. S2CID 219746493.
  12. Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio; Landini, Simone (2016). "κ-generalized models of income and wealth distributions: A survey". The European Physical Journal Special Topics. 225 (10): 1959–1984. arXiv:1610.08676. Bibcode:2016EPJST.225.1959C. doi:10.1140/epjst/e2016-60014-2. ISSN 1951-6355. S2CID 125503224.
  13. Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (2012). "A new model of income distribution: the κ-generalized distribution". Journal of Economics. 105 (1): 63–91. doi:10.1007/s00712-011-0221-0. hdl:11393/73598. ISSN 0931-8658. S2CID 155080665.
  14. Trivellato, Barbara (2013-09-02). "Deformed Exponentials and Applications to Finance" (PDF). Entropy. 15 (12): 3471–3489. Bibcode:2013Entrp..15.3471T. doi:10.3390/e15093471. ISSN 1099-4300.
  15. Passos, Leandro Aparecido; Cleison Santana, Marcos; Moreira, Thierry; Papa, Joao Paulo (2019). "κ-Entropy Based Restricted Boltzmann Machines". 2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE. pp. 1–8. doi:10.1109/IJCNN.2019.8851714. ISBN 978-1-7281-1985-4. S2CID 203605811.
  16. Kaniadakis, Giorgio (2013-09-25). "Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions". Entropy. 15 (12): 3983–4010. arXiv:1309.6536. Bibcode:2013Entrp..15.3983K. doi:10.3390/e15103983. ISSN 1099-4300.
  17. Kaniadakis, G. (2001). "Non-linear kinetics underlying generalized statistics". Physica A: Statistical Mechanics and Its Applications. 296 (3–4): 405–425. arXiv:cond-mat/0103467. Bibcode:2001PhyA..296..405K. doi:10.1016/S0378-4371(01)00184-4. S2CID 44275064.
  18. da Silva, Sérgio Luiz E. F.; dos Santos Lima, Gustavo Z.; Volpe, Ernani V.; de Araújo, João M.; Corso, Gilberto (2021). "Robust approaches for inverse problems based on Tsallis and Kaniadakis generalised statistics". The European Physical Journal Plus. 136 (5): 518. Bibcode:2021EPJP..136..518D. doi:10.1140/epjp/s13360-021-01521-w. ISSN 2190-5444. S2CID 236575441.

External links

This article needs additional or more specific categories. Please help out by adding categories to it so that it can be listed with similar articles. (August 2022)
Category: