Misplaced Pages

Kaniadakis statistics

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Statistical physics approach
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Kaniadakis statistics" – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message)
This article needs attention from an expert in physics or statistics. See the talk page for details. WikiProject Physics or WikiProject Statistics may be able to help recruit an expert. (February 2023)
(Learn how and when to remove this message)

Kaniadakis statistics (also known as κ-statistics) is a generalization of Boltzmann–Gibbs statistical mechanics, based on a relativistic generalization of the classical Boltzmann–Gibbs–Shannon entropy (commonly referred to as Kaniadakis entropy or κ-entropy). Introduced by the Greek Italian physicist Giorgio Kaniadakis in 2001, κ-statistical mechanics preserve the main features of ordinary statistical mechanics and have attracted the interest of many researchers in recent years. The κ-distribution is currently considered one of the most viable candidates for explaining complex physical, natural or artificial systems involving power-law tailed statistical distributions. Kaniadakis statistics have been adopted successfully in the description of a variety of systems in the fields of cosmology, astrophysics, condensed matter, quantum physics, seismology, genomics, economics, epidemiology, and many others.

Mathematical formalism

The mathematical formalism of κ-statistics is generated by κ-deformed functions, especially the κ-exponential function.

κ-exponential function

Plot of the κ-exponential function exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} for three different κ-values. The solid black curve corresponding to the ordinary exponential function exp ( x ) {\displaystyle \exp(x)} ( κ = 0 {\displaystyle \kappa =0} ).

The Kaniadakis exponential (or κ-exponential) function is a one-parameter generalization of an exponential function, given by:

exp κ ( x ) = { ( 1 + κ 2 x 2 + κ x ) 1 κ if  0 < κ < 1. exp ( x ) if  κ = 0 , {\displaystyle \exp _{\kappa }(x)={\begin{cases}{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x{\Big )}^{\frac {1}{\kappa }}&{\text{if }}0<\kappa <1.\\\exp(x)&{\text{if }}\kappa =0,\\\end{cases}}}

with exp κ ( x ) = exp κ ( x ) {\displaystyle \exp _{-\kappa }(x)=\exp _{\kappa }(x)} .

The κ-exponential for 0 < κ < 1 {\displaystyle 0<\kappa <1} can also be written in the form:

exp κ ( x ) = exp ( 1 κ arcsinh ( κ x ) ) . {\displaystyle \exp _{\kappa }(x)=\exp {\Bigg (}{\frac {1}{\kappa }}{\text{arcsinh}}(\kappa x){\Bigg )}.}

The first five terms of the Taylor expansion of exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} are given by:

exp κ ( x ) = 1 + x + x 2 2 + ( 1 κ 2 ) x 3 3 ! + ( 1 4 κ 2 ) x 4 4 ! + {\displaystyle \exp _{\kappa }(x)=1+x+{\frac {x^{2}}{2}}+(1-\kappa ^{2}){\frac {x^{3}}{3!}}+(1-4\kappa ^{2}){\frac {x^{4}}{4!}}+\cdots }

where the first three are the same as a typical exponential function.

Basic properties

The κ-exponential function has the following properties of an exponential function:

exp κ ( x ) C ( R ) {\displaystyle \exp _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} )}
d d x exp κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\exp _{\kappa }(x)>0}
d 2 d x 2 exp κ ( x ) > 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\exp _{\kappa }(x)>0}
exp κ ( ) = 0 + {\displaystyle \exp _{\kappa }(-\infty )=0^{+}}
exp κ ( 0 ) = 1 {\displaystyle \exp _{\kappa }(0)=1}
exp κ ( + ) = + {\displaystyle \exp _{\kappa }(+\infty )=+\infty }
exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(-x)=-1}

For a real number r {\displaystyle r} , the κ-exponential has the property:

[ exp κ ( x ) ] r = exp κ / r ( r x ) {\displaystyle {\Big }^{r}=\exp _{\kappa /r}(rx)} .

κ-logarithm function

Plot of the κ-logarithmic function ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} for three different κ-values. The solid black curve corresponding to the ordinary logarithmic function ln ( x ) {\displaystyle \ln(x)} ( κ = 0 {\displaystyle \kappa =0} ).

The Kaniadakis logarithm (or κ-logarithm) is a relativistic one-parameter generalization of the ordinary logarithm function,

ln κ ( x ) = { x κ x κ 2 κ if  0 < κ < 1 , ln ( x ) if  κ = 0 , {\displaystyle \ln _{\kappa }(x)={\begin{cases}{\frac {x^{\kappa }-x^{-\kappa }}{2\kappa }}&{\text{if }}0<\kappa <1,\\\ln(x)&{\text{if }}\kappa =0,\\\end{cases}}}

with ln κ ( x ) = ln κ ( x ) {\displaystyle \ln _{-\kappa }(x)=\ln _{\kappa }(x)} , which is the inverse function of the κ-exponential:

ln κ ( exp κ ( x ) ) = exp κ ( ln κ ( x ) ) = x . {\displaystyle \ln _{\kappa }{\Big (}\exp _{\kappa }(x){\Big )}=\exp _{\kappa }{\Big (}\ln _{\kappa }(x){\Big )}=x.}

The κ-logarithm for 0 < κ < 1 {\displaystyle 0<\kappa <1} can also be written in the form:

ln κ ( x ) = 1 κ sinh ( κ ln ( x ) ) {\displaystyle \ln _{\kappa }(x)={\frac {1}{\kappa }}\sinh {\Big (}\kappa \ln(x){\Big )}}

The first three terms of the Taylor expansion of ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} are given by:

ln κ ( 1 + x ) = x x 2 2 + ( 1 + κ 2 2 ) x 3 3 {\displaystyle \ln _{\kappa }(1+x)=x-{\frac {x^{2}}{2}}+\left(1+{\frac {\kappa ^{2}}{2}}\right){\frac {x^{3}}{3}}-\cdots }

following the rule

ln κ ( 1 + x ) = n = 1 b n ( κ ) ( 1 ) n 1 x n n {\displaystyle \ln _{\kappa }(1+x)=\sum _{n=1}^{\infty }b_{n}(\kappa )\,(-1)^{n-1}\,{\frac {x^{n}}{n}}}

with b 1 ( κ ) = 1 {\displaystyle b_{1}(\kappa )=1} , and

b n ( κ ) ( x ) = { 1 if  n = 1 , 1 2 ( 1 κ ) ( 1 κ 2 ) . . . ( 1 κ n 1 ) , + 1 2 ( 1 + κ ) ( 1 + κ 2 ) . . . ( 1 + κ n 1 ) for  n > 1 , {\displaystyle b_{n}(\kappa )(x)={\begin{cases}1&{\text{if }}n=1,\\{\frac {1}{2}}{\Big (}1-\kappa {\Big )}{\Big (}1-{\frac {\kappa }{2}}{\Big )}...{\Big (}1-{\frac {\kappa }{n-1}}{\Big )},\,+\,{\frac {1}{2}}{\Big (}1+\kappa {\Big )}{\Big (}1+{\frac {\kappa }{2}}{\Big )}...{\Big (}1+{\frac {\kappa }{n-1}}{\Big )}&{\text{for }}n>1,\\\end{cases}}}

where b n ( 0 ) = 1 {\displaystyle b_{n}(0)=1} and b n ( κ ) = b n ( κ ) {\displaystyle b_{n}(-\kappa )=b_{n}(\kappa )} . The two first terms of the Taylor expansion of ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} are the same as an ordinary logarithmic function.

Basic properties

The κ-logarithm function has the following properties of a logarithmic function:

ln κ ( x ) C ( R + ) {\displaystyle \ln _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} ^{+})}
d d x ln κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\ln _{\kappa }(x)>0}
d 2 d x 2 ln κ ( x ) < 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\ln _{\kappa }(x)<0}
ln κ ( 0 + ) = {\displaystyle \ln _{\kappa }(0^{+})=-\infty }
ln κ ( 1 ) = 0 {\displaystyle \ln _{\kappa }(1)=0}
ln κ ( + ) = + {\displaystyle \ln _{\kappa }(+\infty )=+\infty }
ln κ ( 1 / x ) = ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)}

For a real number r {\displaystyle r} , the κ-logarithm has the property:

ln κ ( x r ) = r ln r κ ( x ) {\displaystyle \ln _{\kappa }(x^{r})=r\ln _{r\kappa }(x)}

κ-Algebra

κ-sum

For any x , y R {\displaystyle x,y\in \mathbb {R} } and | κ | < 1 {\displaystyle |\kappa |<1} , the Kaniadakis sum (or κ-sum) is defined by the following composition law:

x κ y = x 1 + κ 2 y 2 + y 1 + κ 2 x 2 {\displaystyle x{\stackrel {\kappa }{\oplus }}y=x{\sqrt {1+\kappa ^{2}y^{2}}}+y{\sqrt {1+\kappa ^{2}x^{2}}}} ,

that can also be written in form:

x κ y = 1 κ sinh ( a r c s i n h ( κ x ) + a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\oplus }}y={1 \over \kappa }\,\sinh \left({\rm {arcsinh}}\,(\kappa x)\,+\,{\rm {arcsinh}}\,(\kappa y)\,\right)} ,

where the ordinary sum is a particular case in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} : x 0 y = x + y {\displaystyle x{\stackrel {0}{\oplus }}y=x+y} .

The κ-sum, like the ordinary sum, has the following properties:

1. associativity: ( x κ y ) κ z = x κ ( y κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\oplus }}y){\stackrel {\kappa }{\oplus }}z=x{\stackrel {\kappa }{\oplus }}(y{\stackrel {\kappa }{\oplus }}z)}
2. neutral element: x κ 0 = 0 κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\oplus }}0=0{\stackrel {\kappa }{\oplus }}x=x}
3. opposite element: x κ ( x ) = ( x ) κ x = 0 {\displaystyle {\text{3. opposite element:}}\quad x{\stackrel {\kappa }{\oplus }}(-x)=(-x){\stackrel {\kappa }{\oplus }}x=0}
4. commutativity: x κ y = y κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\oplus }}y=y{\stackrel {\kappa }{\oplus }}x}

The κ-difference κ {\displaystyle {\stackrel {\kappa }{\ominus }}} is given by x κ y = x κ ( y ) {\displaystyle x{\stackrel {\kappa }{\ominus }}y=x{\stackrel {\kappa }{\oplus }}(-y)} .

The fundamental property exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} arises as a special case of the more general expression below: exp κ ( x ) exp κ ( y ) = e x p κ ( x κ y ) {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(y)=exp_{\kappa }(x{\stackrel {\kappa }{\oplus }}y)}

Furthermore, the κ-functions and the κ-sum present the following relationships:

ln κ ( x y ) = ln κ ( x ) κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)}

κ-product

For any x , y R {\displaystyle x,y\in \mathbb {R} } and | κ | < 1 {\displaystyle |\kappa |<1} , the Kaniadakis product (or κ-product) is defined by the following composition law:

x κ y = 1 κ sinh ( 1 κ a r c s i n h ( κ x ) a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\otimes }}y={1 \over \kappa }\,\sinh \left(\,{1 \over \kappa }\,\,{\rm {arcsinh}}\,(\kappa x)\,\,{\rm {arcsinh}}\,(\kappa y)\,\right)} ,

where the ordinary product is a particular case in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} : x 0 y = x × y = x y {\displaystyle x{\stackrel {0}{\otimes }}y=x\times y=xy} .

The κ-product, like the ordinary product, has the following properties:

1. associativity: ( x κ y ) κ z = x κ ( y κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\otimes }}y){\stackrel {\kappa }{\otimes }}z=x{\stackrel {\kappa }{\otimes }}(y{\stackrel {\kappa }{\otimes }}z)}
2. neutral element: x κ I = I κ x = x for I = κ 1 sinh κ κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\otimes }}I=I{\stackrel {\kappa }{\otimes }}x=x\quad {\text{for}}\quad I=\kappa ^{-1}\sinh \kappa {\stackrel {\kappa }{\oplus }}x=x}
3. inverse element: x κ x ¯ = x ¯ κ x = I for x ¯ = κ 1 sinh ( κ 2 / a r c s i n h ( κ x ) ) {\displaystyle {\text{3. inverse element:}}\quad x{\stackrel {\kappa }{\otimes }}{\overline {x}}={\overline {x}}{\stackrel {\kappa }{\otimes }}x=I\quad {\text{for}}\quad {\overline {x}}=\kappa ^{-1}\sinh(\kappa ^{2}/{\rm {arcsinh}}\,(\kappa x))}
4. commutativity: x κ y = y κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\otimes }}y=y{\stackrel {\kappa }{\otimes }}x}

The κ-division κ {\displaystyle {\stackrel {\kappa }{\oslash }}} is given by x κ y = x κ y ¯ {\displaystyle x{\stackrel {\kappa }{\oslash }}y=x{\stackrel {\kappa }{\otimes }}{\overline {y}}} .

The κ-sum κ {\displaystyle {\stackrel {\kappa }{\oplus }}} and the κ-product κ {\displaystyle {\stackrel {\kappa }{\otimes }}} obey the distributive law: z κ ( x κ y ) = ( z κ x ) κ ( z κ y ) {\displaystyle z{\stackrel {\kappa }{\otimes }}(x{\stackrel {\kappa }{\oplus }}y)=(z{\stackrel {\kappa }{\otimes }}x){\stackrel {\kappa }{\oplus }}(z{\stackrel {\kappa }{\otimes }}y)} .

The fundamental property ln κ ( 1 / x ) = ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)} arises as a special case of the more general expression below:

ln κ ( x y ) = ln κ ( x ) κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)}
Furthermore, the κ-functions and the κ-product present the following relationships:
exp κ ( x ) κ exp κ ( y ) = exp κ ( x + y ) {\displaystyle \exp _{\kappa }(x){\stackrel {\kappa }{\otimes }}\exp _{\kappa }(y)=\exp _{\kappa }(x\,+\,y)}
ln κ ( x κ y ) = ln κ ( x ) + ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,{\stackrel {\kappa }{\otimes }}\,y)=\ln _{\kappa }(x)+\ln _{\kappa }(y)}

κ-Calculus

κ-Differential

The Kaniadakis differential (or κ-differential) of x {\displaystyle x} is defined by:

d κ x = d x 1 + κ 2 x 2 {\displaystyle \mathrm {d} _{\kappa }x={\frac {\mathrm {d} \,x}{\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}}}} .

So, the κ-derivative of a function f ( x ) {\displaystyle f(x)} is related to the Leibniz derivative through:

d f ( x ) d κ x = γ κ ( x ) d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}=\gamma _{\kappa }(x){\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} ,

where γ κ ( x ) = 1 + κ 2 x 2 {\displaystyle \gamma _{\kappa }(x)={\sqrt {1+\kappa ^{2}x^{2}}}} is the Lorentz factor. The ordinary derivative d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} is a particular case of κ-derivative d f ( x ) d κ x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}} in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Integral

The Kaniadakis integral (or κ-integral) is the inverse operator of the κ-derivative defined through

d κ x f ( x ) = d x 1 + κ 2 x 2 f ( x ) {\displaystyle \int \mathrm {d} _{\kappa }x\,\,f(x)=\int {\frac {\mathrm {d} \,x}{\sqrt {1+\kappa ^{2}\,x^{2}}}}\,\,f(x)} ,

which recovers the ordinary integral in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Trigonometry

κ-Cyclic Trigonometry

Plot of the κ-sine and κ-cosine functions for {\displaystyle \kappa =0} (black curve) and {\displaystyle \kappa =0.1} (blue curve).
Plot of the κ-sine and κ-cosine functions for κ = 0 {\displaystyle \kappa =0} (black curve) and κ = 0.1 {\displaystyle \kappa =0.1} (blue curve).

The Kaniadakis cyclic trigonometry (or κ-cyclic trigonometry) is based on the κ-cyclic sine (or κ-sine) and κ-cyclic cosine (or κ-cosine) functions defined by:

sin κ ( x ) = exp κ ( i x ) exp κ ( i x ) 2 i {\displaystyle \sin _{\kappa }(x)={\frac {\exp _{\kappa }(ix)-\exp _{\kappa }(-ix)}{2i}}} ,
cos κ ( x ) = exp κ ( i x ) + exp κ ( i x ) 2 {\displaystyle \cos _{\kappa }(x)={\frac {\exp _{\kappa }(ix)+\exp _{\kappa }(-ix)}{2}}} ,

where the κ-generalized Euler formula is

exp κ ( ± i x ) = cos κ ( x ) ± i sin κ ( x ) {\displaystyle \exp _{\kappa }(\pm ix)=\cos _{\kappa }(x)\pm i\sin _{\kappa }(x)} .:

The κ-cyclic trigonometry preserves fundamental expressions of the ordinary cyclic trigonometry, which is a special case in the limit κ → 0, such as:

cos κ 2 ( x ) + sin κ 2 ( x ) = 1 {\displaystyle \cos _{\kappa }^{2}(x)+\sin _{\kappa }^{2}(x)=1}
sin κ ( x κ y ) = sin κ ( x ) cos κ ( y ) + cos κ ( x ) sin κ ( y ) {\displaystyle \sin _{\kappa }(x{\stackrel {\kappa }{\oplus }}y)=\sin _{\kappa }(x)\cos _{\kappa }(y)+\cos _{\kappa }(x)\sin _{\kappa }(y)} .

The κ-cyclic tangent and κ-cyclic cotangent functions are given by:

tan κ ( x ) = sin κ ( x ) cos κ ( x ) {\displaystyle \tan _{\kappa }(x)={\frac {\sin _{\kappa }(x)}{\cos _{\kappa }(x)}}}
cot κ ( x ) = cos κ ( x ) sin κ ( x ) {\displaystyle \cot _{\kappa }(x)={\frac {\cos _{\kappa }(x)}{\sin _{\kappa }(x)}}} .

The κ-cyclic trigonometric functions become the ordinary trigonometric function in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Inverse cyclic function

The Kaniadakis inverse cyclic functions (or κ-inverse cyclic functions) are associated to the κ-logarithm:

a r c s i n κ ( x ) = i ln κ ( 1 x 2 + i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {1-x^{2}}}+ix\right)} ,
a r c c o s κ ( x ) = i ln κ ( x 2 1 + x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} ,
a r c t a n κ ( x ) = i ln κ ( 1 i x 1 + i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {1-ix}{1+ix}}}\right)} ,
a r c c o t κ ( x ) = i ln κ ( i x + 1 i x 1 ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {ix+1}{ix-1}}}\right)} .

κ-Hyperbolic Trigonometry

The Kaniadakis hyperbolic trigonometry (or κ-hyperbolic trigonometry) is based on the κ-hyperbolic sine and κ-hyperbolic cosine given by:

sinh κ ( x ) = exp κ ( x ) exp κ ( x ) 2 {\displaystyle \sinh _{\kappa }(x)={\frac {\exp _{\kappa }(x)-\exp _{\kappa }(-x)}{2}}} ,
cosh κ ( x ) = exp κ ( x ) + exp κ ( x ) 2 {\displaystyle \cosh _{\kappa }(x)={\frac {\exp _{\kappa }(x)+\exp _{\kappa }(-x)}{2}}} ,

where the κ-Euler formula is

exp κ ( ± x ) = cosh κ ( x ) ± sinh κ ( x ) {\displaystyle \exp _{\kappa }(\pm x)=\cosh _{\kappa }(x)\pm \sinh _{\kappa }(x)} .

The κ-hyperbolic tangent and κ-hyperbolic cotangent functions are given by:

tanh κ ( x ) = sinh κ ( x ) cosh κ ( x ) {\displaystyle \tanh _{\kappa }(x)={\frac {\sinh _{\kappa }(x)}{\cosh _{\kappa }(x)}}}
coth κ ( x ) = cosh κ ( x ) sinh κ ( x ) {\displaystyle \coth _{\kappa }(x)={\frac {\cosh _{\kappa }(x)}{\sinh _{\kappa }(x)}}} .

The κ-hyperbolic trigonometric functions become the ordinary hyperbolic trigonometric functions in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

From the κ-Euler formula and the property exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} the fundamental expression of κ-hyperbolic trigonometry is given as follows:

cosh κ 2 ( x ) sinh κ 2 ( x ) = 1 {\displaystyle \cosh _{\kappa }^{2}(x)-\sinh _{\kappa }^{2}(x)=1}

κ-Inverse hyperbolic function

The Kaniadakis inverse hyperbolic functions (or κ-inverse hyperbolic functions) are associated to the κ-logarithm:

a r c s i n h κ ( x ) = ln κ ( 1 + x 2 + x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {1+x^{2}}}+x\right)} ,
a r c c o s h κ ( x ) = ln κ ( x 2 1 + x ) {\displaystyle {\rm {arccosh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} ,
a r c t a n h κ ( x ) = ln κ ( 1 + x 1 x ) {\displaystyle {\rm {arctanh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1+x}{1-x}}}\right)} ,
a r c c o t h κ ( x ) = ln κ ( 1 x 1 + x ) {\displaystyle {\rm {arccoth}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1-x}{1+x}}}\right)} ,

in which are valid the following relations:

a r c s i n h κ ( x ) = s i g n ( x ) a r c c o s h κ ( 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {sign}}(x){\rm {arccosh}}_{\kappa }\left({\sqrt {1+x^{2}}}\right)} ,
a r c s i n h κ ( x ) = a r c t a n h κ ( x 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arctanh}}_{\kappa }\left({\frac {x}{\sqrt {1+x^{2}}}}\right)} ,
a r c s i n h κ ( x ) = a r c c o t h κ ( 1 + x 2 x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arccoth}}_{\kappa }\left({\frac {\sqrt {1+x^{2}}}{x}}\right)} .

The κ-cyclic and κ-hyperbolic trigonometric functions are connected by the following relationships:

s i n κ ( x ) = i s i n h κ ( i x ) {\displaystyle {\rm {sin}}_{\kappa }(x)=-i{\rm {sinh}}_{\kappa }(ix)} ,
c o s κ ( x ) = c o s h κ ( i x ) {\displaystyle {\rm {cos}}_{\kappa }(x)={\rm {cosh}}_{\kappa }(ix)} ,
t a n κ ( x ) = i t a n h κ ( i x ) {\displaystyle {\rm {tan}}_{\kappa }(x)=-i{\rm {tanh}}_{\kappa }(ix)} ,
c o t κ ( x ) = i c o t h κ ( i x ) {\displaystyle {\rm {cot}}_{\kappa }(x)=i{\rm {coth}}_{\kappa }(ix)} ,
a r c s i n κ ( x ) = i a r c s i n h κ ( i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\,{\rm {arcsinh}}_{\kappa }(ix)} ,
a r c c o s κ ( x ) i a r c c o s h κ ( i x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)\neq -i\,{\rm {arccosh}}_{\kappa }(ix)} ,
a r c t a n κ ( x ) = i a r c t a n h κ ( i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=-i\,{\rm {arctanh}}_{\kappa }(ix)} ,
a r c c o t κ ( x ) = i a r c c o t h κ ( i x ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\,{\rm {arccoth}}_{\kappa }(ix)} .

Kaniadakis entropy

The Kaniadakis statistics is based on the Kaniadakis κ-entropy, which is defined through:

S κ ( p ) = i p i ln κ ( p i ) = i p i ln κ ( 1 p i ) {\displaystyle S_{\kappa }{\big (}p{\big )}=-\sum _{i}p_{i}\ln _{\kappa }{\big (}p_{i}{\big )}=\sum _{i}p_{i}\ln _{\kappa }{\bigg (}{\frac {1}{p_{i}}}{\bigg )}}

where p = { p i = p ( x i ) ; x R ; i = 1 , 2 , . . . , N ; i p i = 1 } {\displaystyle p=\{p_{i}=p(x_{i});x\in \mathbb {R} ;i=1,2,...,N;\sum _{i}p_{i}=1\}} is a probability distribution function defined for a random variable X {\displaystyle X} , and 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} is the entropic index.

The Kaniadakis κ-entropy is thermodynamically and Lesche stable and obeys the Shannon-Khinchin axioms of continuity, maximality, generalized additivity and expandability.

Kaniadakis distributions

Main article: Kaniadakis distribution

A Kaniadakis distribution (or κ-distribution) is a probability distribution derived from the maximization of Kaniadakis entropy under appropriate constraints. In this regard, several probability distributions emerge for analyzing a wide variety of phenomenology associated with experimental power-law tailed statistical distributions.

κ-Exponential distribution

Main article: Kaniadakis Exponential distribution

κ-Gaussian distribution

Main article: Kaniadakis Gaussian distribution

κ-Gamma distribution

Main article: Kaniadakis Gamma distribution

κ-Weibull distribution

Main article: Kaniadakis Weibull distribution

κ-Logistic distribution

Main article: Kaniadakis Logistic distribution

Kaniadakis integral transform

κ-Laplace Transform

The Kaniadakis Laplace transform (or κ-Laplace transform) is a κ-deformed integral transform of the ordinary Laplace transform. The κ-Laplace transform converts a function f {\displaystyle f} of a real variable t {\displaystyle t} to a new function F κ ( s ) {\displaystyle F_{\kappa }(s)} in the complex frequency domain, represented by the complex variable s {\displaystyle s} . This κ-integral transform is defined as:

F κ ( s ) = L κ { f ( t ) } ( s ) = 0 f ( t ) [ exp κ ( t ) ] s d t {\displaystyle F_{\kappa }(s)={\cal {L}}_{\kappa }\{f(t)\}(s)=\int _{\,0}^{\infty }\!f(t)\,^{s}\,dt}

The inverse κ-Laplace transform is given by:

f ( t ) = L κ 1 { F κ ( s ) } ( t ) = 1 2 π i c i c + i F κ ( s ) [ exp κ ( t ) ] s 1 + κ 2 t 2 d s {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)={{\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\!F_{\kappa }(s)\,{\frac {^{s}}{\sqrt {1+\kappa ^{2}t^{2}}}}\,ds}}

The ordinary Laplace transform and its inverse transform are recovered as κ 0 {\displaystyle \kappa \rightarrow 0} .

Properties

Let two functions f ( t ) = L κ 1 { F κ ( s ) } ( t ) {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)} and g ( t ) = L κ 1 { G κ ( s ) } ( t ) {\displaystyle g(t)={\cal {L}}_{\kappa }^{-1}\{G_{\kappa }(s)\}(t)} , and their respective κ-Laplace transforms F κ ( s ) {\displaystyle F_{\kappa }(s)} and G κ ( s ) {\displaystyle G_{\kappa }(s)} , the following table presents the main properties of κ-Laplace transform:

Properties of the κ-Laplace transform
Property f ( t ) {\displaystyle f(t)} F κ ( s ) {\displaystyle F_{\kappa }(s)}
Linearity a f ( t ) + b g ( t ) {\displaystyle a\,f(t)+b\,g(t)} a F κ ( s ) + b G κ ( s ) {\displaystyle a\,F_{\kappa }(s)+b\,G_{\kappa }(s)}
Time scaling f ( a t ) {\displaystyle f(at)} 1 a F κ / a ( s a ) {\displaystyle {\frac {1}{a}}\,F_{\kappa /a}({\frac {s}{a}})}
Frequency shifting f ( t ) [ exp κ ( t ) ] a {\displaystyle f(t)\,^{a}} F κ ( s a ) {\displaystyle F_{\kappa }(s-a)}
Derivative d f ( t ) d t {\displaystyle {\frac {d\,f(t)}{dt}}} s L κ { f ( t ) 1 + κ 2 t 2 } ( s ) f ( 0 ) {\displaystyle s\,{\cal {L}}_{\kappa }\left\{{\frac {f(t)}{\sqrt {1+\kappa ^{2}t^{2}}}}\right\}(s)-f(0)}
Derivative d d t 1 + κ 2 t 2 f ( t ) {\displaystyle {\frac {d}{dt}}\,{\sqrt {1+\kappa ^{2}t^{2}}}\,f(t)} s F κ ( s ) f ( 0 ) {\displaystyle s\,F_{\kappa }(s)-f(0)}
Time-domain integration 1 1 + κ 2 t 2 0 t f ( w ) d w {\displaystyle {\frac {1}{\sqrt {1+\kappa ^{2}t^{2}}}}\,\int _{0}^{t}f(w)dw} 1 s F κ ( s ) {\displaystyle {\frac {1}{s}}\,F_{\kappa }(s)}
f ( t ) [ ln ( exp κ ( t ) ) ] n {\displaystyle f(t)\,^{n}} ( 1 ) n d n F κ ( s ) d s n {\displaystyle (-1)^{n}{\frac {d^{n}F_{\kappa }(s)}{ds^{n}}}}
f ( t ) [ ln ( exp κ ( t ) ) ] n {\displaystyle f(t)\,^{-n}} s + d w n w n + d w n 1 . . . w 3 + d w 2 w 2 + d w 1 F κ ( w 1 ) {\displaystyle \int _{s}^{+\infty }dw_{n}\int _{w_{n}}^{+\infty }dw_{n-1}...\int _{w_{3}}^{+\infty }dw_{2}\int _{w_{2}}^{+\infty }dw_{1}\,F_{\kappa }(w_{1})}
Dirac delta-function δ ( t τ ) {\displaystyle \delta (t-\tau )} [ exp κ ( τ ) ] s {\displaystyle ^{s}}
Heaviside unit function u ( t τ ) {\displaystyle u(t-\tau )} s 1 + κ 2 τ 2 + κ 2 τ s 2 κ 2 [ exp κ ( τ ) ] s {\displaystyle {\frac {s{\sqrt {1+\kappa ^{2}\tau ^{2}}}+\kappa ^{2}\tau }{s^{2}-\kappa ^{2}}}\,^{s}}
Power function t ν 1 {\displaystyle t^{\nu -1}} s 2 s 2 κ 2 ν 2 Γ κ s ( ν + 1 ) ν s ν = s s + | κ | ν Γ ( ν ) | 2 κ | ν Γ ( s | 2 κ | ν 2 ) Γ ( s | 2 κ | + ν 2 ) {\displaystyle {\frac {s^{2}}{s^{2}-\kappa ^{2}\nu ^{2}}}\,{\frac {\Gamma _{\frac {\kappa }{s}}(\nu +1)}{\nu \,s^{\nu }}}={\frac {s}{s+|\kappa |\nu }}\,{\frac {\Gamma (\nu )}{|2\kappa |^{\nu }}}\,{\frac {\Gamma \left({\frac {s}{|2\kappa |}}-{\frac {\nu }{2}}\right)}{\Gamma \left({\frac {s}{|2\kappa |}}+{\frac {\nu }{2}}\right)}}}
Power function t 2 m 1 ,     m Z + {\displaystyle t^{2m-1},\ \ m\in Z^{+}} ( 2 m 1 ) ! j = 1 m [ s 2 ( 2 j ) 2 κ 2 ] {\displaystyle {\frac {(2m-1)!}{\prod _{j=1}^{m}\left}}}
Power function t 2 m ,     m Z + {\displaystyle t^{2m},\ \ m\in Z^{+}} ( 2 m ) ! s j = 1 m + 1 [ s 2 ( 2 j 1 ) 2 κ 2 ] {\displaystyle {\frac {(2m)!\,s}{\prod _{j=1}^{m+1}\left}}}

The κ-Laplace transforms presented in the latter table reduce to the corresponding ordinary Laplace transforms in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Fourier Transform

The Kaniadakis Fourier transform (or κ-Fourier transform) is a κ-deformed integral transform of the ordinary Fourier transform, which is consistent with the κ-algebra and the κ-calculus. The κ-Fourier transform is defined as:

F κ [ f ( x ) ] ( ω ) = 1 2 π + f ( x ) exp κ ( x κ ω ) i d κ x {\displaystyle {\cal {F}}_{\kappa }(\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,\exp _{\kappa }(-x\otimes _{\kappa }\omega )^{i}\,d_{\kappa }x}

which can be rewritten as

F κ [ f ( x ) ] ( ω ) = 1 2 π + f ( x ) exp ( i x { κ } ω { κ } ) 1 + κ 2 x 2 d x {\displaystyle {\cal {F}}_{\kappa }(\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,{\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}}) \over {\sqrt {1+\kappa ^{2}\,x^{2}}}}\,dx}

where x { κ } = 1 κ a r c s i n h ( κ x ) {\displaystyle x_{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,x)} and ω { κ } = 1 κ a r c s i n h ( κ ω ) {\displaystyle \omega _{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,\omega )} . The κ-Fourier transform imposes an asymptotically log-periodic behavior by deforming the parameters x {\displaystyle x} and ω {\displaystyle \omega } in addition to a damping factor, namely 1 + κ 2 x 2 {\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}} .

Real (top panel) and imaginary (bottom panel) part of the kernel h κ ( x , ω ) {\displaystyle h_{\kappa }(x,\omega )} for typical κ {\displaystyle \kappa } -values and ω = 1 {\displaystyle \omega =1} .

The kernel of the κ-Fourier transform is given by:

h κ ( x , ω ) = exp ( i x { κ } ω { κ } ) 1 + κ 2 x 2 {\displaystyle h_{\kappa }(x,\omega )={\frac {\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}})}{\sqrt {1+\kappa ^{2}\,x^{2}}}}}

The inverse κ-Fourier transform is defined as:

F κ [ f ^ ( ω ) ] ( x ) = 1 2 π + f ^ ( ω ) exp κ ( ω κ x ) i d κ ω {\displaystyle {\cal {F}}_{\kappa }(x)={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }{\hat {f}}(\omega )\,\exp _{\kappa }(\omega \otimes _{\kappa }x)^{i}\,d_{\kappa }\omega }

Let u κ ( x ) = 1 κ cosh ( κ ln ( x ) ) {\displaystyle u_{\kappa }(x)={\frac {1}{\kappa }}\cosh {\Big (}\kappa \ln(x){\Big )}} , the following table shows the κ-Fourier transforms of several notable functions:

κ-Fourier transform of several functions
f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }(\omega )}
Step function θ ( x ) {\displaystyle \theta (x)} 2 π δ ( ω ) + 1 2 π i ω { κ } {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )+{1 \over {\sqrt {2\,\pi }}\,i\,\omega _{\{\kappa \}}}}
Modulation cos κ ( a κ x ) {\displaystyle \cos _{\kappa }(a{\stackrel {\kappa }{\oplus }}x)} π 2 u κ ( exp κ ( a ) ) ( δ ( ω + a ) + δ ( ω a ) ) {\displaystyle {\sqrt {\pi \over 2}}\,u_{\kappa }(\exp _{\kappa }(a))\,\left(\delta (\omega +a)+\delta (\omega -a)\right)}
Causal κ {\displaystyle \kappa } -exponential θ ( x ) exp κ ( a κ x ) {\displaystyle \theta (x)\,\exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}x)} 1 2 π 1 a { κ } + i ω { κ } {\displaystyle {1 \over {\sqrt {2\,\pi }}}{1 \over a_{\{\kappa \}}+i\,\omega _{\{\kappa \}}}}
Symmetric κ {\displaystyle \kappa } -exponential exp κ ( a κ | x | ) {\displaystyle \exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}|x|)} 2 π a { κ } a { κ } 2 + ω { κ } 2 {\displaystyle {\sqrt {2 \over \pi }}\,{a_{\{\kappa \}} \over a_{\{\kappa \}}^{2}+\omega _{\{\kappa \}}^{2}}}
Constant 1 {\displaystyle 1} 2 π δ ( ω ) {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )}
κ {\displaystyle \kappa } -Phasor exp κ ( a κ x ) i {\displaystyle \exp _{\kappa }\,(a{\stackrel {\kappa }{\otimes }}x)^{i}} 2 π u κ ( exp κ ( a ) ) δ ( ω a ) {\displaystyle {\sqrt {2\,\pi }}\,u_{\kappa }(\exp _{\kappa }(a))\,\delta (\omega -a)}
Impuslse δ ( x a ) {\displaystyle \delta (x-a)} 1 2 π exp κ ( ω κ a ) i u κ ( exp κ ( a ) ) {\displaystyle {1 \over {\sqrt {2\,\pi }}}{\exp _{\kappa }\,(\omega {\stackrel {\kappa }{\otimes }}a)^{i} \over u_{\kappa }\left(\exp _{\kappa }\,(a)\right)}}
Signum Sgn ( x ) {\displaystyle (x)} 2 π 1 i ω { κ } {\displaystyle {\sqrt {2 \over \pi }}\,\,{1 \over i\,\omega _{\{\kappa \}}}}
Rectangular Π ( x a ) {\displaystyle \Pi \left({x \over a}\right)} 2 π a { κ } s i n c κ ( ω κ a ) {\displaystyle {\sqrt {2 \over \pi }}\,\,a_{\{\kappa \}}\,{\rm {sinc}}_{\kappa }(\omega {\stackrel {\kappa }{\otimes }}a)}

The κ-deformed version of the Fourier transform preserves the main properties of the ordinary Fourier transform, as summarized in the following table.

κ-Fourier properties
f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }(\omega )}
Linearity F κ [ α f ( x ) + β g ( x ) ] ( ω ) = α F κ [ f ( x ) ] ( ω ) + β F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }(\omega )=\alpha \,{\cal {F}}_{\kappa }(\omega )+\beta \,{\cal {F}}_{\kappa }(\omega )}
Scaling F κ [ f ( α x ) ] ( ω ) = 1 α F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={1 \over \alpha }\,{\cal {F}}_{\kappa ^{\prime }}\left(\omega ^{\prime })}
where κ = κ / α {\displaystyle \kappa ^{\prime }=\kappa /\alpha } and ω = ( a / κ ) sinh ( a r c s i n h ( κ ω ) / a 2 ) {\displaystyle \omega ^{\prime }=(a/\kappa )\,\sinh \left({\rm {arcsinh}}(\kappa \,\omega )/a^{2}\right)}
κ {\displaystyle \kappa } -Scaling F κ [ f ( α κ x ) ] ( ω ) = 1 α { κ } F κ [ f ( x ) ] ( 1 α κ ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={1 \over \alpha _{\{\kappa \}}}\,{\cal {F}}_{\kappa }\left({\frac {1}{\alpha }}{\stackrel {\kappa }{\otimes }}\omega \right)}
Complex conjugation F κ [ f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }{\big }^{\ast }(\omega )={\cal {F}}_{\kappa }{\big }(-\omega )}
Duality F κ [ F κ [ f ( x ) ] ( ν ) ] ( ω ) = f ( ω ) {\displaystyle {\cal {F}}_{\kappa }{\Big }(\nu ){\Big ]}(\omega )=f(-\omega )}
Reverse F κ [ f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={\cal {F}}_{\kappa }(-\omega )}
κ {\displaystyle \kappa } -Frequency shift F κ [ exp κ ( ω 0 κ x ) i f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω κ ω 0 ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={\cal {F}}_{\kappa }(\omega {\stackrel {\kappa }{\ominus }}\omega _{0})}
κ {\displaystyle \kappa } -Time shift F κ [ f ( x κ x 0 ) ] ( ω ) = exp κ ( ω κ x 0 ) i F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )=\exp _{\kappa }(\omega \,{\stackrel {\kappa }{\otimes }}\,x_{0})^{i}\,{\cal {F}}_{\kappa }(\omega )}
Transform of κ {\displaystyle \kappa } -derivative F κ [ d f ( x ) d κ x ] ( ω ) = i ω { κ } F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )=i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }(\omega )}
κ {\displaystyle \kappa } -Derivative of transform d d κ ω F κ [ f ( x ) ] ( ω ) = i ω { κ } F κ [ x { κ } f ( x ) ] ( ω ) {\displaystyle {\frac {d}{d_{\kappa }\omega }}\,{\cal {F}}_{\kappa }(\omega )=-i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }\left(\omega )}
Transform of integral F κ [ x f ( y ) d y ] ( ω ) = 1 i ω { κ } F κ [ f ( x ) ] ( ω ) + 2 π F κ [ f ( x ) ] ( 0 ) δ ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={1 \over i\,\omega _{\{\kappa \}}}{\cal {F}}_{\kappa }(\omega )+2\,\pi \,{\cal {F}}_{\kappa }(0)\,\delta (\omega )}
κ {\displaystyle \kappa } -Convolution F κ [ ( f κ g ) ( x ) ] ( ω ) = 2 π F κ [ f ( x ) ] ( ω ) F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={\sqrt {2\,\pi }}\,{\cal {F}}_{\kappa }(\omega )\,{\cal {F}}_{\kappa }(\omega )}
where ( f κ g ) ( x ) = + f ( y ) g ( x κ y ) d κ y {\displaystyle (f\,{\stackrel {\kappa }{\circledast }}\,g)(x)=\int \limits _{-\infty }\limits ^{+\infty }f(y)\,g(x\,{\stackrel {\kappa }{\ominus }}\,y)\,d_{\kappa }y}
Modulation F κ [ f ( x ) g ( x ) ] ( ω ) = 1 2 π ( F κ [ f ( x ) ] κ F κ [ g ( x ) ] ) ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left(\omega )={1 \over {\sqrt {2\,\pi }}}\left({\cal {F}}_{\kappa }\left\,{\stackrel {\kappa }{\circledast }}\,{\cal {F}}_{\kappa }\left\right)(\omega )}

The properties of the κ-Fourier transform presented in the latter table reduce to the corresponding ordinary Fourier transforms in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

See also

References

  •  This article incorporates text available under the CC BY 3.0 license.
  1. Kaniadakis, G. (2009). "Relativistic entropy and related Boltzmann kinetics". The European Physical Journal A. 40 (3): 275–287. arXiv:0901.1058. Bibcode:2009EPJA...40..275K. doi:10.1140/epja/i2009-10793-6. ISSN 1434-6001. S2CID 119190011.
  2. Kaniadakis, G. (2002). "Statistical mechanics in the context of special relativity". Physical Review E. 66 (5): 056125. arXiv:cond-mat/0210467. Bibcode:2002PhRvE..66e6125K. doi:10.1103/PhysRevE.66.056125. ISSN 1063-651X. PMID 12513574. S2CID 45635888.
  3. Kaniadakis, G. (2005). "Statistical mechanics in the context of special relativity. II". Physical Review E. 72 (3): 036108. arXiv:cond-mat/0507311. Bibcode:2005PhRvE..72c6108K. doi:10.1103/PhysRevE.72.036108. ISSN 1539-3755. PMID 16241516. S2CID 18115408.
  4. Kaniadakis, G. (2011). "Power-law tailed statistical distributions and Lorentz transformations". Physics Letters A. 375 (3): 356–359. arXiv:1110.3944. Bibcode:2011PhLA..375..356K. doi:10.1016/j.physleta.2010.11.057. ISSN 0375-9601. S2CID 118435479.
  5. Kaniadakis, G. (2001). "Non-linear kinetics underlying generalized statistics". Physica A: Statistical Mechanics and Its Applications. 296 (3): 405–425. arXiv:cond-mat/0103467. Bibcode:2001PhyA..296..405K. doi:10.1016/S0378-4371(01)00184-4. ISSN 0378-4371. S2CID 44275064.
  6. Kaniadakis, G. (2009). "Maximum entropy principle and power-law tailed distributions". The European Physical Journal B. 70 (1): 3–13. arXiv:0904.4180. Bibcode:2009EPJB...70....3K. doi:10.1140/epjb/e2009-00161-0. ISSN 1434-6028. S2CID 55421804.
  7. Kaniadakis, G. (2021). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743. Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  8. Carvalho, J. C.; Silva, R.; do Nascimento Jr., J. D.; De Medeiros, J. R. (2008). "Power law statistics and stellar rotational velocities in the Pleiades". EPL (Europhysics Letters). 84 (5): 59001. arXiv:0903.0836. Bibcode:2008EL.....8459001C. doi:10.1209/0295-5075/84/59001. ISSN 0295-5075. S2CID 7123391.
  9. Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia (2014). "A method to deconvolve stellar rotational velocities". Astronomy & Astrophysics. 565: A85. arXiv:1401.1054. Bibcode:2014A&A...565A..85C. doi:10.1051/0004-6361/201323344. ISSN 0004-6361. S2CID 59375612.
  10. Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud (2015). "Quantum entanglement and Kaniadakis entropy". Physica Scripta. 90 (4): 045101. Bibcode:2015PhyS...90d5101O. doi:10.1088/0031-8949/90/4/045101. ISSN 0031-8949. S2CID 123776127.
  11. Abreu, Everton M. C.; Ananias Neto, Jorge; Mendes, Albert C. R.; de Paula, Rodrigo M. (2019). "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics". Chaos, Solitons & Fractals. 118: 307–310. arXiv:1808.01891. Bibcode:2019CSF...118..307A. doi:10.1016/j.chaos.2018.11.033. ISSN 0960-0779. S2CID 119207713.
  12. Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881. Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
  13. da Silva, Sérgio Luiz E. F. (2021). "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. ISSN 0960-0779. S2CID 234063959.
  14. Souza, N. T. C. M.; Anselmo, D. H. A. L.; Silva, R.; Vasconcelos, M. S.; Mello, V. D. (2014). "A κ -statistical analysis of the Y-chromosome". EPL (Europhysics Letters). 108 (3): 38004. doi:10.1209/0295-5075/108/38004. ISSN 0295-5075. S2CID 122456729.
  15. Costa, M. O.; Silva, R.; Anselmo, D. H. A. L.; Silva, J. R. P. (2019). "Analysis of human DNA through power-law statistics". Physical Review E. 99 (2): 022112. Bibcode:2019PhRvE..99b2112C. doi:10.1103/PhysRevE.99.022112. ISSN 2470-0045. PMID 30934358. S2CID 91186653.
  16. Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (2012). "A new model of income distribution: the κ-generalized distribution". Journal of Economics. 105 (1): 63–91. doi:10.1007/s00712-011-0221-0. hdl:11393/73598. ISSN 0931-8658. S2CID 155080665.
  17. Trivellato, Barbara (2013). "Deformed Exponentials and Applications to Finance". Entropy. 15 (12): 3471–3489. Bibcode:2013Entrp..15.3471T. doi:10.3390/e15093471. ISSN 1099-4300.
  18. Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. arXiv:2012.00629. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996. PMID 33203913.
  19. Abe, S.; Kaniadakis, G.; Scarfone, A. M. (2004) . "Stabilities of generalized entropies". Journal of Physics A: Mathematical and General. 37 (44): 10513–10519. arXiv:cond-mat/0401290. Bibcode:2004JPhA...3710513A. doi:10.1088/0305-4470/37/44/004. S2CID 16080176.
  20. Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192. Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
  21. ^ Kaniadakis, Giorgio (2013-09-25). "Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions". Entropy. 15 (12): 3983–4010. arXiv:1309.6536. Bibcode:2013Entrp..15.3983K. doi:10.3390/e15103983. ISSN 1099-4300.
  22. ^ Scarfone, A.M. (2017). "κ -deformed Fourier transform". Physica A: Statistical Mechanics and Its Applications. 480: 63–78. arXiv:2206.06869. Bibcode:2017PhyA..480...63S. doi:10.1016/j.physa.2017.03.036. S2CID 126079408.

External links

Category: