Misplaced Pages

Isotopes of meitnerium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Meitnerium-282)

Isotopes of meitnerium (109Mt)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Mt synth 0.64 s α Bh
Mt synth 0.62 s α Bh
Mt synth 4 s α Bh
Mt synth 67 s? α Bh

Meitnerium (109Mt) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was Mt in 1982, and this is also the only isotope directly synthesized; all other isotopes are only known as decay products of heavier elements. There are eight known isotopes, from Mt to Mt. There may also be two isomers. The longest-lived of the known isotopes is Mt with a half-life of 8 seconds. The unconfirmed heavier Mt appears to have an even longer half-life of 67 seconds.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Excitation energy
Mt 109 157 266.137060(100) 2.0(5) ms α Bh
Mt 1140(90) keV 6(3) ms α Bh
Mt 109 159 268.13865(25)# 23(7) ms α Bh 5+#, 6+#
Mt 0+X keV 70+100
−30 ms
α Bh
Mt 109 161 270.14032(21)# 800(400) ms α Bh
Mt 1.1 s? α Bh
Mt 109 165 274.14734(40)# 640+760
−230 ms
α Bh
Mt 109 166 275.14897(42)# 20+13
−6 ms
α Bh
Mt 109 167 276.15171(57)# 620+60
−40 ms
α Bh
Mt 250(80) keV 7(3) s α Bh
Mt 109 168 277.15353(71)# 5+9
−2 ms
SF (various)
Mt 109 169 278.15649(62)# 6(3) s α Bh
Mt 109 173 282.16689(48)# 67 s? α Bh
This table header & footer:
  1. Mt – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ( ) spin value – Indicates spin with weak assignment arguments.
  5. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Not directly synthesized, occurs as decay product of Rg
  7. ^ This isomer is unconfirmed
  8. Not directly synthesized, occurs in decay chain of Nh
  9. Not directly synthesized, occurs in decay chain of Nh
  10. Not directly synthesized, occurs in decay chain of Mc
  11. ^ Not directly synthesized, occurs in decay chain of Mc
  12. Not directly synthesized, occurs in decay chain of Ts
  13. Not directly synthesized, occurs in decay chain of Ts
  14. Not directly synthesized, occurs in decay chain of Fl and Lv; unconfirmed

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as meitnerium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas the lightest isotope of meitnerium, meitnerium-266, can be synthesized directly this way, all the heavier meitnerium isotopes have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. Nevertheless, the products of hot fusion tend to still have more neutrons overall. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z = 109.

Target Projectile CN Attempt result
Pb Co Mt Successful reaction
Bi Fe Mt Successful reaction
U Cl Mt Failure to date
Pu P Mt Reaction yet to be attempted
Cm Al Mt Reaction yet to be attempted
Cm Al Mt Reaction yet to be attempted
Bk Mg Mt Reaction yet to be attempted
Es Ne Mt Failure to date

Cold fusion

After the first successful synthesis of meitnerium in 1982 by the GSI team, a team at the Joint Institute for Nuclear Research in Dubna, Russia, also tried to observe the new element by bombarding bismuth-209 with iron-58. In 1985 they managed to identity alpha decays from the descendant isotope Cf indicating the formation of meitnerium. The observation of a further two atoms of Mt from the same reaction was reported in 1988 and of another 12 in 1997 by the German team at GSI.

The same meitnerium isotope was also observed by the Russian team at Dubna in 1985 from the reaction:


82Pb
+
27Co

109Mt
+
n

by detecting the alpha decay of the descendant Cf nuclei. In 2007, an American team at the Lawrence Berkeley National Laboratory (LBNL) confirmed the decay chain of the Mt isotope from this reaction.

Hot fusion

In 2002–2003, the team at LBNL attempted to generate the isotope Mt to study its chemical properties by bombarding uranium-238 with chlorine-37, but without success. Another possible reaction that would form this isotope would be the fusion of berkelium-249 with magnesium-26; however, the yield for this reaction is expected to be very low due to the high radioactivity of the berkelium-249 target. Other potentially longer-lived isotopes were unsuccessfully targeted by a team at Lawrence Livermore National Laboratory (LLNL) in 1988 by bombarding einsteinium-254 with neon-22.

Decay products

List of meitnerium isotopes observed by decay
Evaporation residue Observed meitnerium isotope
Lv, Fl, Nh, Rg ? Mt ?
Ts, Mc, Nh, Rg Mt
Ts, Mc, Nh, Rg Mt
Mc, Nh, Rg Mt
Mc, Nh, Rg Mt
Mc, Nh, Rg Mt
Nh, Rg Mt
Rg Mt

All the isotopes of meitnerium except meitnerium-266 have been detected only in the decay chains of elements with a higher atomic number, such as roentgenium. Roentgenium currently has eight known isotopes; all but one of them undergo alpha decays to become meitnerium nuclei, with mass numbers between 268 and 282. Parent roentgenium nuclei can be themselves decay products of nihonium, flerovium, moscovium, livermorium, or tennessine. For example, in January 2010, the Dubna team (JINR) identified meitnerium-278 as a product in the decay of tennessine via an alpha decay sequence:


117Ts

115Mc
+
2He

115Mc

113Nh
+
2He

113Nh

111Rg
+
2He

111Rg

109Mt
+
2He

Nuclear isomerism

Mt

Two atoms of Mt have been identified in the decay chains of Nh. The two decays have very different lifetimes and decay energies and are also produced from two apparently different isomers of Rg. The first isomer decays by emission of an alpha particle with energy 10.03 MeV and has a lifetime of 7.16 ms. The other alpha decays with a lifetime of 1.63 s; the decay energy was not measured. An assignment to specific levels is not possible with the limited data available and further research is required.

Mt

The alpha decay spectrum for Mt appears to be complicated from the results of several experiments. Alpha particles of energies 10.28, 10.22 and 10.10 MeV have been observed, emitted from Mt atoms with half-lives of 42 ms, 21 ms and 102 ms respectively. The long-lived decay must be assigned to an isomeric level. The discrepancy between the other two half-lives has yet to be resolved. An assignment to specific levels is not possible with the data available and further research is required.

Chemical yields of isotopes

Cold fusion

The table below provides cross-sections and excitation energies for cold fusion reactions producing meitnerium isotopes directly. Data in bold represent maxima derived from excitation function measurements. + represents an observed exit channel.

Projectile Target CN 1n 2n 3n
Fe Bi Mt 7.5 pb
Co Pb Mt 2.6 pb, 14.9 MeV

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; HIVAP = heavy-ion vaporisation statistical-evaporation model; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
U Cl Mt 3n (Mt) 13.31 pb DNS
Pu P Mt 3n (Mt) 4.25 pb DNS
Am Si Mt 3n (Mt) 22 pb HIVAP
Am Si Mt 4n (Mt) 3 pb HIVAP
Cm Al Mt 3n (Mt) 27.83 pb DNS
Cm Al Mt 5n (Mt) 97.44 pb DNS
Bk Mg Mt 4n (Mt) 9.5 pb HIVAP
Es Ne Mt 4n (Mt) 8 pb HIVAP
Es Ne Mt 4-5n (Mt) 3 pb HIVAP

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G.; Dahl, L.; Eberhardt, K.; Grzywacz, R.; Hamilton, J. H.; Henderson, R. A.; Kenneally, J. M.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Miernik, K.; Miller, D.; Moody, K. J.; Morita, K.; Nishio, K.; Popeko, A. G.; Roberto, J. B.; Runke, J.; Rykaczewski, K. P.; Saro, S.; Scheidenberger, C.; Schött, H. J.; Shaughnessy, D. A.; Stoyer, M. A.; Thörle-Popiesch, P.; Tinschert, K.; Trautmann, N.; Uusitalo, J.; Yeremin, A. V. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.
  3. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  4. ^ Oganessian, Yu. Ts.; et al. (2013). "Experimental studies of the Bk + Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope Mt". Physical Review C. 87 (5): 054621. Bibcode:2013PhRvC..87e4621O. doi:10.1103/PhysRevC.87.054621.
  5. ^ Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  6. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  7. Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  8. Münzenberg, G.; et al. (1982). "Observation of one correlated α-decay in the reaction Fe on Bi→109". Zeitschrift für Physik A. 309 (1): 89–90. Bibcode:1982ZPhyA.309...89M. doi:10.1007/BF01420157. S2CID 120062541.
  9. Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. (1988). "New results on element 109". Zeitschrift für Physik A. 330 (4): 435–436. Bibcode:1988ZPhyA.330..435M. doi:10.1007/BF01290131. S2CID 121364541.
  10. Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. (1997). "Excitation function for the production of 108 and 109". Zeitschrift für Physik A. 358 (4): 377–378. Bibcode:1997ZPhyA.358..377H. doi:10.1007/s002180050343. S2CID 124304673.
  11. Nelson, S. L.; Gregorich, K. E.; Dragojević, I.; et al. (2009). "Comparison of complementary reactions in the production of Mt". Physical Review C. 79 (2): 027605. Bibcode:2009PhRvC..79b7605N. doi:10.1103/PhysRevC.79.027605. S2CID 73657127.
  12. ^ Zielinski P. M. et al. (2003). "The search for Mt via the reaction U + Cl" Archived 2012-02-06 at the Wayback Machine, GSI Annual report. Retrieved on 2008-03-01
  13. Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  14. ^ Oganessian, Yu. Ts.; et al. (2010). "Synthesis of a New Element with Atomic Number Z = 117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  15. ^ Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  16. ^ Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; Katori, Kenji; Koura, Hiroyuki; Kudo, Hisaaki; Ohnishi, Tetsuya; Ozawa, Akira; Suda, Toshimi; Sueki, Keisuke; Xu, HuShan; Yamaguchi, Takayuki; Yoneda, Akira; Yoshida, Atsushi; Zhao, YuLiang (2004). "Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn,n)113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  17. ^ Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; Yeremin, A. V.; Andreyev, A. N.; Saro, S.; Janik, R.; Leino, M. (1995). "The new element 111" (PDF). Zeitschrift für Physik A. 350 (4): 281–282. Bibcode:1995ZPhyA.350..281H. doi:10.1007/BF01291182. S2CID 18804192. Archived from the original (PDF) on 2014-01-16.
  18. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2018-03-07. Retrieved 2008-06-06.
  19. ^ Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108–114 nuclei with U, Pu and Cm targets". Physical Review C. 80: 057601. arXiv:0912.4069. doi:10.1103/PhysRevC.80.057601. S2CID 118733755.
  20. ^ Wang, K.; et al. (2004). "A Proposed Reaction Channel for the Synthesis of the Superheavy Nucleus Z = 109". Chinese Physics Letters. 21 (3): 464–467. arXiv:nucl-th/0402065. Bibcode:2004ChPhL..21..464W. doi:10.1088/0256-307X/21/3/013. S2CID 117308338.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: