Misplaced Pages

Mercury(II) sulfate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Mercuric sulfate)

Mercury(II) sulfate
Mercury(II) sulfate
Names
Other names Mercuric sulfate, Mercurypersulfate, Mercury Bisulfate
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.083 Edit this at Wikidata
EC Number
  • 231-992-5
PubChem CID
RTECS number
  • OX0500000
UNII
UN number 1645
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Hg.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2Key: DOBUSJIVSSJEDA-UHFFFAOYSA-L
SMILES
  • S(=O)(=O).
Properties
Chemical formula HgSO4
Molar mass 296.653 g/mol
Appearance white monoclinic crystals
Odor odorless
Density 6.47 g/cm, solid
Sublimation
conditions
450 °C (dec.)
Solubility in water Decomposes in water to yellow mercuric subsulfate and sulfuric acid
Solubility soluble in hot H2SO4, NaCl solution
insoluble in alcohol, acetone, ammonia
Magnetic susceptibility (χ) −78.1·10 cm/mol
Structure
Crystal structure rhombic
Thermochemistry
Std enthalpy of
formation
fH298)
−707.5 kJ mol
Hazards
GHS labelling:
Pictograms GHS06: ToxicGHS08: Health hazardGHS09: Environmental hazard
Signal word Danger
Hazard statements H300, H310, H330, H373, H410
Precautionary statements P260, P262, P264, P270, P271, P273, P280, P284, P301+P316, P302+P352, P304+P340, P316, P319, P320, P321, P330, P361+P364, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
3 0 1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Mercury(II) sulfate, commonly called mercuric sulfate, is the chemical compound HgSO4. It is an odorless salt that forms white granules or crystalline powder. In water, it separates into an insoluble basic sulfate with a yellow color and sulfuric acid.

Structure

Portion of structure of HgSO4 illustrating the distorted tetrahedral geometry at Hg (dark blue spheres).

The anhydrous compound features Hg in a highly distorted tetrahedral HgO4 environment. Two Hg-O distances are 2.22 Å and the others are 2.28 and 2.42 Å. In the monohydrate, Hg adopts a linear coordination geometry with Hg-O (sulfate) and Hg-O (water) bond lengths of 2.179 and 2.228 Å, respectively. Four weaker bonds are also observed with Hg---O distances >2.5 Å.

History

In 1932, the Japanese chemical company Chisso Corporation began using mercury sulfate as the catalyst for the production of acetaldehyde from acetylene and water. Though it was unknown at the time, methylmercury is formed as side product of this reaction. Exposure and consumption of the mercury waste products, including methylmercury, that were dumped into Minamata Bay by Chisso are believed to be the cause of Minamata disease in Minamata, Japan.

Production

Mercury sulfate can be produced by treating mercury with hot concentrated sulfuric acid:

Hg + 2 H2SO4 → HgSO4 + SO2 + 2 H2O

Alternatively yellow mercuric oxide reacts also with concentrated sulfuric acid.

Uses

Denigés' reagent

An acidic solution of mercury sulfate is known as Denigés' reagent. It was commonly used throughout the 20th century as a qualitative analysis reagent. If Denigés' reagent is added to a solution containing compounds that have tertiary alcohols, a yellow or red precipitate will form.

Hydration reactions

Mercury compounds such as mercury sulfate and mercury(II) acetate are commonly used as catalysts in oxymercuration-demercuration, a type of electrophilic addition reaction which results in hydration of an unsaturated compound. The hydration of an alkene results in an alcohol that follows the regioselectivity predicted by Markovnikov's rule. For an alkyne, the result is an enol, which tautomerizes to give a ketone. An example is the conversion of 2,5-dimethylhexyne-2,5-diol to 2,2,5,5-tetramethyltetrahydrofuran using aqueous mercury sulfate without the addition of acid.

Conversion of 2,5-dimethylhexyne-2,5-diol to 2,2,5,5-tetramethylte-trahydrofuran-3-one
Conversion of 2,5-dimethylhexyne-2,5-diol to 2,2,5,5-tetramethylte-trahydrofuran-3-one

As previously mentioned, HgSO4 was used as the catalyst for the production of acetaldehyde from acetylene and water.

Health issues

Inhalation of HgSO4 can result in acute poisoning: causing tightness in the chest, difficulties breathing, coughing and pain. Exposure of HgSO4 to the eyes can cause ulceration of conjunctiva and cornea. If mercury sulfate is exposed to the skin it may cause sensitization dermatitis. Lastly, ingestion of mercury sulfate will cause necrosis, pain, vomiting, and severe purging. Ingestion can result in death within a few hours due to peripheral vascular collapse.

It was used in the late 19th century to induce vomiting for medical reasons.

References

  1. ^ "Chemicalbook". Retrieved 2 May 2011.
  2. Wu, Shengji; Uddin, Md. Azhar; Nagano, Saori; Ozaki, Masaki; Sasaoka, Eiji (2011). "Fundamental Study on Decomposition Characteristics of Mercury Compounds over Solid Powder by Temperature-Programmed Decomposition Desorption Mass Spectrometry". Energy & Fuels. 25 (1): 144–153. doi:10.1021/ef1009499.
  3. ^ Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, Florida: CRC Press. pp. 5–19. ISBN 0-8493-0594-2.
  4. "Mercuric sulfate". pubchem.ncbi.nlm.nih.gov.
  5. Aurivillius, Karin; Stålhandske, Claes (1980). "A Reinvestigation of the Crystal Structures of HgSO4 and CdSO4". Zeitschrift für Kristallographie - Crystalline Materials. 153 (1–2): 121–129. Bibcode:1980ZK....153..121A. doi:10.1524/zkri.1980.0011.
  6. Stålhandske, C. (1980). "An X-ray and Neutron Diffraction Study of Mercury(II) Sulphate Monohydrate". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 36: 23–26. doi:10.1107/s0567740880002361.
  7. Minamata Disease Archived 13 November 2019 at the Wayback Machine. Boston University. Retrieved 2016-11-10.
  8. Simon, Matthias; Jönk, Peter; Wühl-Couturier, Gabriele; Halbach, Stefan (2006). "Mercury, Mercury Alloys, and Mercury Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a16_269.pub2. ISBN 3527306730.
  9. Robey, R. F.; Robertson, N. C. (May 1947). "Test for tert-Butyl and Isopropyl Alcohols with Deniges Reagent". Analytical Chemistry. 19 (5): 310–311. doi:10.1021/ac60005a007.
  10. Marks, E. M.; Lipkin, D. (1939). "Reaction of Aliphatic Ethers with Denigés' Reagent". J. Org. Chem. 3 (6): 598–602. doi:10.1021/jo01223a008.
  11. Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012). Organic chemistry (2nd ed.). Oxford: Oxford university press. pp. 444–445. ISBN 978-0-19-927029-3.
  12. Wasacz, J. P.; Badding, V. G. (1982). "A hydration of an alkyne illustrating steam and vacuum distillation". Journal of Chemical Education. 59 (8): 694. Bibcode:1982JChEd..59..694W. doi:10.1021/ed059p694.
  13. Vogt, R; Nieuwland, J (September 1921). "The role of mercury salts in the catalytic transformation of acetylene into acetaldehyde, and a new commercial process for manufacture of paraaldehyde". J. Am. Chem. Soc. 43 (9): 2071–81. doi:10.1021/ja01442a010.
  14. Hubbard (24 June 1846). "On the Effects of the Sub-Sulphate of Mercury, (Turpeth Mineral,) As An Emetic". BMJ. s1-10 (25): 288–289. doi:10.1136/bmj.s1-10.25.288. ISSN 0959-8138. PMC 2559525. PMID 20794001.

External links

Mercury compounds
Mercury(I)
Mercury(II)
Organomercury
compounds
Mercury(IV)
Amalgams
Mercury cations
Compounds containing the sulfate group (SO2−4)
H2SO4 He
Li2SO4 BeSO4 B2S2O9
-BO3
+BO3
esters
ROSO−3
(RO)2SO2
+CO3
+C2O4
(NH4)2SO4
[N2H5]HSO4
(NH3OH)2SO4
NOHSO4
+NO3
H2OSO4 +F Ne
Na2SO4
NaHSO4
MgSO4 Al2(SO4)3
Al2SO4(OAc)4
Si +PO4 SO2−4
HSO3HSO4
(HSO4)2
+SO3
+Cl Ar
K2SO4
KHSO4
CaSO4 Sc2(SO4)3 TiOSO4 VSO4
V2(SO4)3
VOSO4
CrSO4
Cr2(SO4)3
MnSO4 FeSO4
Fe2(SO4)3
CoSO4
Co2(SO4)3
NiSO4
Ni2(SO4)3
CuSO4
Cu2SO4
SO4
ZnSO4 Ga2(SO4)3 Ge(SO4)2 As +SeO3 +Br Kr
RbHSO4
Rb2SO4
SrSO4 Y2(SO4)3 Zr(SO4)2 Nb2O2(SO4)3 MoO(SO4)2
MoO2(SO4)
Tc Ru(SO4)2 Rh2(SO4)3 PdSO4 Ag2SO4
AgSO4
CdSO4 In2(SO4)3 SnSO4
Sn(SO4)2
Sb2(SO4)3 TeOSO4 I2(SO4)3
(IO)2SO4
+IO3
Xe
Cs2SO4
CsHSO4
BaSO4 * Lu2(SO4)3 Hf(SO4)2 Ta WO(SO4)2 Re2O5(SO4)2 OsSO4
Os2(SO4)3
Os(SO4)2
IrSO4
Ir2(SO4)3
Pt2(SO4)5 AuSO4
Au2(SO4)3
Hg2SO4
HgSO4
Tl2SO4
Tl2(SO4)3
PbSO4
Pb(SO4)2
Bi2(SO4)3 PoSO4
Po(SO4)2
At Rn
Fr RaSO4 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* La2(SO4)3 Ce2(SO4)3
Ce(SO4)2
Pr2(SO4)3 Nd2(SO4)3 Pm2(SO4)3 Sm2(SO4)3 EuSO4
Eu2(SO4)3
Gd2(SO4)3 Tb2(SO4)3 Dy2(SO4)3 Ho2(SO4)3 Er2(SO4)3 Tm2(SO4)3 Yb2(SO4)3
** Ac2(SO4)3 Th(SO4)2 Pa U2(SO4)3
U(SO4)2
UO2SO4
Np(SO4)2 Pu(SO4)2 Am2(SO4)3 Cm2(SO4)3 Bk Cf2(SO4)3 Es Fm Md No
Sulfur compounds
Sulfides and
disulfides
Sulfur halides
Sulfur oxides
and oxyhalides
Sulfites
Sulfates
Sulfur nitrides
Thiocyanates
Organic compounds
Categories: