| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Mo) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molybdenum (42Mo) has 39 known isotopes, ranging in atomic mass from 81 to 119, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.
Molybdenum-100, with a half-life of 7.07×10 years, is the only naturally occurring radioisotope. It undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth.
List of isotopes
Nuclide |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
Mo | 42 | 39 | 80.96623(54)# | 1# ms |
β? | Nb | 5/2+# | ||||||||||||
β, p? | Zr | ||||||||||||||||||
Mo | 42 | 40 | 81.95666(43)# | 30# ms |
β? | Nb | 0+ | ||||||||||||
β, p? | Zr | ||||||||||||||||||
Mo | 42 | 41 | 82.95025(43)# | 23(19) ms | β | Nb | 3/2−# | ||||||||||||
β, p? | Zr | ||||||||||||||||||
Mo | 42 | 42 | 83.94185(32)# | 2.3(3) s | β | Nb | 0+ | ||||||||||||
β, p? | Zr | ||||||||||||||||||
Mo | 42 | 43 | 84.938261(17) | 3.2(2) s | β (99.86%) | Nb | (1/2+) | ||||||||||||
β, p (0.14%) | Zr | ||||||||||||||||||
Mo | 42 | 44 | 85.931174(3) | 19.1(3) s | β | Nb | 0+ | ||||||||||||
Mo | 42 | 45 | 86.928196(3) | 14.1(3) s | β (85%) | Nb | 7/2+# | ||||||||||||
β, p (15%) | Zr | ||||||||||||||||||
Mo | 42 | 46 | 87.921968(4) | 8.0(2) min | β | Nb | 0+ | ||||||||||||
Mo | 42 | 47 | 88.919468(4) | 2.11(10) min | β | Nb | (9/2+) | ||||||||||||
Mo | 387.5(2) keV | 190(15) ms | IT | Mo | (1/2−) | ||||||||||||||
Mo | 42 | 48 | 89.913931(4) | 5.56(9) h | β | Nb | 0+ | ||||||||||||
Mo | 2874.73(15) keV | 1.14(5) μs | IT | Mo | 8+ | ||||||||||||||
Mo | 42 | 49 | 90.911745(7) | 15.49(1) min | β | Nb | 9/2+ | ||||||||||||
Mo | 653.01(9) keV | 64.6(6) s | IT (50.0%) | Mo | 1/2− | ||||||||||||||
β (50.0%) | Nb | ||||||||||||||||||
Mo | 42 | 50 | 91.90680715(17) | Observationally Stable | 0+ | 0.14649(106) | |||||||||||||
Mo | 2760.52(14) keV | 190(3) ns | IT | Mo | 8+ | ||||||||||||||
Mo | 42 | 51 | 92.90680877(19) | 4839(63) y | EC (95.7%) | Nb | 5/2+ | ||||||||||||
EC (4.3%) | Nb | ||||||||||||||||||
Mo | 2424.95(4) keV | 6.85(7) h | IT (99.88%) | Mo | 21/2+ | ||||||||||||||
β (0.12%) | Nb | ||||||||||||||||||
Mo | 9695(17) keV | 1.8(10) μs | IT | Mo | (39/2−) | ||||||||||||||
Mo | 42 | 52 | 93.90508359(15) | Stable | 0+ | 0.09187(33) | |||||||||||||
Mo | 42 | 53 | 94.90583744(13) | Stable | 5/2+ | 0.15873(30) | |||||||||||||
Mo | 42 | 54 | 95.90467477(13) | Stable | 0+ | 0.16673(8) | |||||||||||||
Mo | 42 | 55 | 96.90601690(18) | Stable | 5/2+ | 0.09582(15) | |||||||||||||
Mo | 42 | 56 | 97.90540361(19) | Observationally Stable | 0+ | 0.24292(80) | |||||||||||||
Mo | 42 | 57 | 98.90770730(25) | 65.932(5) h | β | Tc | 1/2+ | ||||||||||||
Mo | 97.785(3) keV | 15.5(2) μs | IT | Mo | 5/2+ | ||||||||||||||
Mo | 684.10(19) keV | 760(60) ns | IT | Mo | 11/2− | ||||||||||||||
Mo | 42 | 58 | 99.9074680(3) | 7.07(14)×10 y | ββ | Ru | 0+ | 0.09744(65) | |||||||||||
Mo | 42 | 59 | 100.9103376(3) | 14.61(3) min | β | Tc | 1/2+ | ||||||||||||
Mo | 13.497(9) keV | 226(7) ns | IT | Mo | 3/2+ | ||||||||||||||
Mo | 57.015(11) keV | 133(70) ns | IT | Mo | 5/2+ | ||||||||||||||
Mo | 42 | 60 | 101.910294(9) | 11.3(2) min | β | Tc | 0+ | ||||||||||||
Mo | 42 | 61 | 102.913092(10) | 67.5(15) s | β | Tc | 3/2+ | ||||||||||||
Mo | 42 | 62 | 103.913747(10) | 60(2) s | β | Tc | 0+ | ||||||||||||
Mo | 42 | 63 | 104.9169798(23) | 36.3(8) s | β | Tc | (5/2−) | ||||||||||||
Mo | 42 | 64 | 105.9182732(98) | 8.73(12) s | β | Tc | 0+ | ||||||||||||
Mo | 42 | 65 | 106.9221198(99) | 3.5(5) s | β | Tc | (1/2+) | ||||||||||||
Mo | 65.4(2) keV | 445(21) ns | IT | Mo | (5/2+) | ||||||||||||||
Mo | 42 | 66 | 107.9240475(99) | 1.105(10) s | β (>99.5%) | Tc | 0+ | ||||||||||||
β, n (<0.5%) | Tc | ||||||||||||||||||
Mo | 42 | 67 | 108.928438(12) | 700(14) ms | β (98.7%) | Tc | (1/2+) | ||||||||||||
β, n (1.3%) | Tc | ||||||||||||||||||
Mo | 69.7(5) keV | 210(60) ns | IT | Mo | 5/2+# | ||||||||||||||
Mo | 42 | 68 | 109.930718(26) | 292(7) ms | β (98.0%) | Tc | 0+ | ||||||||||||
β, n (2.0%) | Tc | ||||||||||||||||||
Mo | 42 | 69 | 110.935652(14) | 193.6(44) ms | β (>88%) | Tc | 1/2+# | ||||||||||||
β, n (<12%) | Tc | ||||||||||||||||||
Mo | 100(50)# keV | ~200 ms | β | Tc | 7/2−# | ||||||||||||||
β, n? | Tc | ||||||||||||||||||
Mo | 42 | 70 | 111.93829(22)# | 125(5) ms | β | Tc | 0+ | ||||||||||||
β, n? | Tc | ||||||||||||||||||
Mo | 42 | 71 | 112.94348(32)# | 80(2) ms | β | Tc | 5/2+# | ||||||||||||
β, n? | Tc | ||||||||||||||||||
Mo | 42 | 72 | 113.94667(32)# | 58(2) ms | β | Tc | 0+ | ||||||||||||
β, n? | Tc | ||||||||||||||||||
Mo | 42 | 73 | 114.95217(43)# | 45.5(20) ms | β | Tc | 3/2+# | ||||||||||||
β, n? | Tc | ||||||||||||||||||
β, 2n? | Tc | ||||||||||||||||||
Mo | 42 | 74 | 115.95576(54)# | 32(4) ms | β | Tc | 0+ | ||||||||||||
β, n? | Tc | ||||||||||||||||||
β, 2n? | Tc | ||||||||||||||||||
Mo | 42 | 75 | 116.96169(54)# | 22(5) ms | β | Tc | 3/2+# | ||||||||||||
β, n? | Tc | ||||||||||||||||||
β, 2n? | Tc | ||||||||||||||||||
Mo | 42 | 76 | 117.96525(54)# | 21(6) ms | β | Tc | 0+ | ||||||||||||
β, n? | Tc | ||||||||||||||||||
β, 2n? | Tc | ||||||||||||||||||
Mo | 42 | 77 | 118.97147(32)# | 12# ms |
β? | Tc | 3/2+# | ||||||||||||
β, n? | Tc | ||||||||||||||||||
β, 2n? | Tc | ||||||||||||||||||
This table header & footer: |
- Mb – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- Bold half-life – nearly stable, half-life longer than age of universe.
-
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- Believed to decay by ββ to Zr with a half-life over 1.9×10 y
- ^ Fission product
- Believed to decay by ββ to Ru with a half-life of over 1×10 years
- Used to produce the medically useful radioisotope technetium-99m
- Primordial radionuclide
Molybdenum-99
Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction. It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in approximately 40 million medical procedures annually. A common misunderstanding or misnomer is that Mo is used in these diagnostic medical scans, when actually it has no role in the imaging agent or the scan itself. In fact, Mo co-eluted with the Tc (also known as breakthrough) is considered a contaminant and is minimised to adhere to the appropriate USP (or equivalent) regulations and standards. The IAEA recommends that Mo concentrations exceeding more than 0.15 μCi/mCi Tc or 0.015% should not be administered for usage in humans. Typically, quantification of Mo breakthrough is performed for every elution when using a Mo/Tc generator during QA-QC testing of the final product.
There are alternative routes for generating Mo that do not require a fissionable target, such as high or low enriched uranium (i.e., HEU or LEU). Some of these include accelerator-based methods, such as proton bombardment or photoneutron reactions on enriched Mo targets. Historically, Mo generated by neutron capture on natural isotopic molybdenum or enriched Mo targets was used for the development of commercial Mo/Tc generators. The neutron-capture process was eventually superseded by fission-based Mo that could be generated with much higher specific activities. Implementing feed-stocks of high specific activity Mo solutions thus allowed for higher quality production and better separations of Tc from Mo on small alumina column using chromatography. Employing low-specific activity Mo under similar conditions is particularly problematic in that either higher Mo loading capacities or larger columns are required for accommodating equivalent amounts of Mo. Chemically speaking, this phenomenon occurs due to other Mo isotopes present aside from Mo that compete for surface site interactions on the column substrate. In turn, low-specific activity Mo usually requires much larger column sizes and longer separation times, and usually yields Tc accompanied by unsatisfactory amounts of the parent radioisotope when using γ-alumina as the column substrate. Ultimately, the inferior end-product Tc generated under these conditions makes it essentially incompatible with the commercial supply-chain.
In the last decade, cooperative agreements between the US government and private capital entities have resurrected neutron capture production for commercially distributed Mo/Tc in the United States of America. The return to neutron-capture-based Mo has also been accompanied by the implementation of novel separation methods that allow for low-specific activity Mo to be utilized.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245.
- "Standard Atomic Weights: Molybdenum". CIAAW. 2013.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, Florida: CRC Press. Section 11. ISBN 978-0-8493-0487-3.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
- Frank N. Von Hippel; Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security. 14 (2 & 3): 151–162. Bibcode:2006S&GS...14..151V. doi:10.1080/08929880600993071. S2CID 122507063.
- Ibrahim I, Zulkifli H, Bohari Y, Zakaria I, Wan Hamirul BWK. Minimizing Molybdenum-99 Contamination In Technetium-99m Pertechnetate From The Elution Of Mo/Tc Generator (PDF) (Report).
- Richards, P. (1989). Technetium-99m: The early days. 3rd International Symposium on Technetium in Chemistry and Nuclear Medicine, Padova, Italy, 5-8 Sep 1989. OSTI 5612212.
- Richards, P. (1965-10-14). The Technetium-99m Generator (Report). doi:10.2172/4589063. OSTI 4589063.
- "Emerging leader with new solutions in the field of nuclear medicine technology". NorthStar Medical Radioisotopes, LLC. Retrieved 2020-01-23.
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.