| |||
Names | |||
---|---|---|---|
IUPAC name Sodium tetrahydridoborate(1–) | |||
Systematic IUPAC name Sodium boranuide | |||
Identifiers | |||
CAS Number |
| ||
3D model (JSmol) | |||
ChEBI | |||
ChemSpider | |||
ECHA InfoCard | 100.037.262 | ||
EC Number |
| ||
Gmelin Reference | 23167 | ||
MeSH | Sodium+borohydride | ||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1426 | ||
CompTox Dashboard (EPA) | |||
InChI
| |||
SMILES
| |||
Properties | |||
Chemical formula | Na[BH4] | ||
Molar mass | 37.83 g·mol | ||
Appearance | white crystals hygroscopic | ||
Density | 1.07 g/cm | ||
Melting point | 400 °C (752 °F; 673 K)(decomposes) | ||
Solubility in water | 550 g/L | ||
Solubility | soluble in liquid ammonia, amines, pyridine | ||
Structure | |||
Crystal structure | Cubic (NaCl), cF8 | ||
Space group | Fm3m, No. 225 | ||
Lattice constant | a = 0.6157 nm | ||
Thermochemistry | |||
Heat capacity (C) | 86.8 J·mol·K | ||
Std molar entropy (S298) |
101.3 J·mol·K | ||
Std enthalpy of formation (ΔfH298) |
−188.6 kJ·mol | ||
Gibbs free energy (ΔfG) | −123.9 kJ·mol | ||
Hazards | |||
GHS labelling: | |||
Pictograms | |||
Signal word | Danger | ||
Hazard statements | H260, H301, H314, H360F | ||
Precautionary statements | P201, P231+P232, P280, P308+P313, P370+P378, P402+P404 | ||
NFPA 704 (fire diamond) | 3 1 2W | ||
Flash point | 70 °C (158 °F; 343 K) | ||
Autoignition temperature |
ca. 220 °C (428 °F; 493 K) | ||
Explosive limits | 3% | ||
Lethal dose or concentration (LD, LC): | |||
LD50 (median dose) | 160 mg/kg (Oral – Rat) 230 mg/kg (Dermal – Rabbit) | ||
Related compounds | |||
Other anions | Sodium cyanoborohydride Sodium hydride Sodium borate Borax Sodium aluminum hydride | ||
Other cations | Lithium borohydride | ||
Related compounds | Lithium aluminium hydride Sodium triacetoxyborohydride | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4 (sometimes written as Na[BH4]). It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodium borohydride is a reducing agent that finds application in papermaking and dye industries. It is also used as a reagent in organic synthesis.
The compound was discovered in the 1940s by H. I. Schlesinger, who led a team seeking volatile uranium compounds. Results of this wartime research were declassified and published in 1953.
Properties
The compound is soluble in alcohols, certain ethers, and water, although it slowly hydrolyzes.
Solvent | Solubility (g/(100 mL)) |
---|---|
CH3OH | 13 |
CH3CH2OH | 3.16 |
Diglyme | 5.15 |
(CH3CH2)2O | insoluble |
Sodium borohydride is an odorless white to gray-white microcrystalline powder that often forms lumps. It can be purified by recrystallization from warm (50 °C) diglyme. Sodium borohydride is soluble in protic solvents such as water and lower alcohols. It also reacts with these protic solvents to produce H2; however, these reactions are fairly slow. Complete decomposition of a methanol solution requires nearly 90 min at 20 °C. It decomposes in neutral or acidic aqueous solutions, but is stable at pH 14.
Structure
NaBH4 is a salt, consisting of the tetrahedral [BH4] anion. The solid is known to exist as three polymorphs: α, β and γ. The stable phase at room temperature and pressure is α-NaBH4, which is cubic and adopts an NaCl-type structure, in the Fm3m space group. At a pressure of 6.3 GPa, the structure changes to the tetragonal β-NaBH4 (space group P421c) and at 8.9 GPa, the orthorhombic γ-NaBH4 (space group Pnma) becomes the most stable.
Synthesis and handling
For commercial NaBH4 production, the Brown-Schlesinger process and the Bayer process are the most popular methods. In the Brown-Schlesinger process sodium borohydride is industrially prepared from sodium hydride (produced by reacting Na and H2) and trimethyl borate at 250–270 °C:
- B(OCH3)3 + 4 NaH → NaBH4 + 3 NaOCH3
Millions of kilograms are produced annually, far exceeding the production levels of any other hydride reducing agent. In the Bayer process, it is produced from inorganic borates, including borosilicate glass and borax (Na2B4O7):
- Na2B4O7 + 16 Na + 8 H2 + 7 SiO2 → 4 NaBH4 + 7 Na2SiO3
Magnesium is a less expensive reductant, and could in principle be used instead:
- 8 MgH2 + Na2B4O7 + Na2CO3 → 4 NaBH4 + 8 MgO + CO2
and
- 2 MgH2 + NaBO2 → NaBH4 + 2 MgO
Reactivity
Organic synthesis
NaBH4 reduces many organic carbonyls, depending on the conditions. Most typically, it is used in the laboratory for converting ketones and aldehydes to alcohols. These reductions proceed in two stages, formation of the alkoxide followed by hydrolysis:
- NaBH4 + 4 R2C=O → NaO−CHR2 + B(O−CHR2)3
- NaO−CHR2 + B(O−CHR2)3 + 4 H2O → 4 HO−CHR2 + NaOH + B(OH)3
It also efficiently reduces acyl chlorides, anhydrides, α-hydroxylactones, thioesters, and imines at room temperature or below. It reduces esters slowly and inefficiently with excess reagent and/or elevated temperatures, while carboxylic acids and amides are not reduced at all.
Nevertheless, an alcohol, often methanol or ethanol, is generally the solvent of choice for sodium borohydride reductions of ketones and aldehydes. The mechanism of ketone and aldehyde reduction has been scrutinized by kinetic studies, and contrary to popular depictions in textbooks, the mechanism does not involve a 4-membered transition state like alkene hydroboration, or a six-membered transition state involving a molecule of the alcohol solvent. Hydrogen-bonding activation is required, as no reduction occurs in an aprotic solvent like diglyme. However, the rate order in alcohol is 1.5, while carbonyl compound and borohydride are both first order, suggesting a mechanism more complex than one involving a six-membered transition state that includes only a single alcohol molecule. It was suggested that the simultaneous activation of the carbonyl compound and borohydride occurs, via interaction with the alcohol and alkoxide ion, respectively, and that the reaction proceeds through an open transition state.
α,β-Unsaturated ketones tend to be reduced by NaBH4 in a 1,4-sense, although mixtures are often formed. Addition of cerium chloride improves the selectivity for 1,2-reduction of unsaturated ketones (Luche reduction). α,β-Unsaturated esters also undergo 1,4-reduction in the presence of NaBH4.
The NaBH4-MeOH system, formed by the addition of methanol to sodium borohydride in refluxing THF, reduces esters to the corresponding alcohols. Mixing water or an alcohol with the borohydride converts some of it into unstable hydride ester, which is more efficient at reduction, but the reductant eventually decomposes spontaneously to produce hydrogen gas and borates. The same reaction can also occur intramolecularly: an α-ketoester converts into a diol, since the alcohol produced attacks the borohydride to produce an ester of the borohydride, which then reduces the neighboring ester.
The reactivity of NaBH4 can be enhanced or augmented by a variety of compounds.
Many additives for modifying the reactivity of sodium borohydride have been developed as indicated by the following incomplete listing.
additive | synthetic applications | page in Smith and March | comment |
---|---|---|---|
AlCl3 | reduction of ketones to methylene | 1837 | |
BiCl3 | converts epoxides to allylic alcohols | 1316 | |
(C6H5Te)2 | reduction of nitroarenes | 1862 | |
CeCl3 | reduction of ketones in the presence of aldehydes | 1794 | Luche reduction |
CoCl2 | reduction of azides to amines | 1822 | |
InCl3 | hydrogenolysis of alkyl bromides, double reduction of unsaturated ketones | 1825, 1793 | |
LiCl | amine oxides to amines | 1846 | lithium borohydride |
NiCl2 | deoxygenation of sulfoxides, hydrogenolysis of aryl tosylates, desulfurization, reduction of nitriles | 1851,1831, 991, 1814 | nickel boride |
TiCl4 | denitrosatation of nitrosamines | 1823 | |
ZnCl2 | reduction of aldehydes | 1793 | |
ZrCl4 | reduction of disulfides, reduction of azides to amines, cleavage of allyl aryl ethers | 1853, 1822, 582 |
Oxidation
Oxidation with iodine in tetrahydrofuran gives borane–tetrahydrofuran, which can reduce carboxylic acids to alcohols.
Partial oxidation of borohydride with iodine gives octahydrotriborate:
- 3 [BH4] + I2 → [B3H8] + 2 H2 + 2 I
Coordination chemistry
[BH4] is a ligand for metal ions. Such borohydride complexes are often prepared by the action of NaBH4 (or the LiBH4) on the corresponding metal halide. One example is the titanocene derivative:
- 2 (C5H5)2TiCl2 + 4 NaBH4 → 2 (C5H5)2TiBH4 + 4 NaCl + B2H6 + H2
Protonolysis and hydrolysis
NaBH4 reacts with water and alcohols, with evolution of hydrogen gas and formation of the corresponding borate, the reaction being especially fast at low pH. Exploiting this reactivity, sodium borohydride has been studied as a prototypes of the direct borohydride fuel cell.
- NaBH4 + 2 H2O → NaBO2 + 4 H2 (ΔH < 0)
Applications
Paper manufacture
The dominant application of sodium borohydride is the production of sodium dithionite from sulfur dioxide: Sodium dithionite is used as a bleaching agent for wood pulp and in the dyeing industry.
It has been tested as pretreatment for pulping of wood, but is too costly to be commercialized.
Chemical synthesis
Sodium borohydride reduces aldehydes and ketones to give the related alcohols. This reaction is used in the production of various antibiotics including chloramphenicol, dihydrostreptomycin, and thiophenicol. Various steroids and vitamin A are prepared using sodium borohydride in at least one step.
Niche or abandoned applications
Sodium borohydride has been considered as a way to store hydrogen for hydrogen-fueled vehicles, as it is safer (being stable in dry air) and more efficient on a weight basis than most other alternatives. The hydrogen can be released by simple hydrolysis of the borohydride. However, such a usage would need a cheap, relatively simple, and energy-efficient process to recycle the hydrolysis product, sodium metaborate, back to the borohydride. No such process was available as of 2007.
Although practical temperatures and pressures for hydrogen storage have not been achieved, in 2012 a core–shell nanostructure of sodium borohydride was used to store, release and reabsorb hydrogen under moderate conditions.
Skilled professional conservator/restorers have used sodium borohydride to minimize or reverse foxing in old books and documents.
See also
Many derivatives and analogues of sodium borohydride exhibit modified reactivity of value in organic synthesis.
- Sodium triacetoxyborohydride, a milder reductant owing to the presence of more electron-withdrawing acetate in place of hydride.
- Sodium triethylborohydride, a stronger reductant owing to the presence of electron-donating ethyl groups in place of hydride.
- sodium cyanoborohydride, a milder reductant owing to the presence of more electron-withdrawing cyanide in place of hydride. Useful for reductive aminations.
- Lithium borohydride, a more strongly reducing reagent.
- L-selectride (lithium tri-sec-butylborohydride), a more strongly reducing derivative.
- Lithium aluminium hydride, a more strongly reducing reagent, capable of reducing esters and amides.
References
- ^ Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 4.89. ISBN 978-1439855119.
- Ford, P. T. and Powell, H. M. (1954). "The unit cell of potassium borohydride, KBH4, at 90° K". Acta Crystallogr. 7 (8): 604–605. Bibcode:1954AcCry...7..604F. doi:10.1107/S0365110X54002034.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data. William M. Haynes, David R. Lide, Thomas J. Bruno (2016-2017, 97th ed.). Boca Raton, Florida. 2016. ISBN 978-1-4987-5428-6. OCLC 930681942.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link) - Record of Sodium borohydride in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on 2023-11-09.
- Busch, D.H. (2009). Inorganic Syntheses. Vol. 20. Wiley. p. 137. ISBN 9780470132869. Retrieved 20 May 2015.
- ^ Banfi, Luca; Narisano, Enrica; Riva, Renata; Stiasni, Nikola; Hiersemann, Martin; Yamada, Tohru; Tsubo, Tatsuyuki (2014). "Sodium Borohydride". Encyclopedia of Reagents for Organic Synthesis. pp. 1–13. doi:10.1002/047084289X.rs052.pub3. ISBN 9780470842898.
- Schlesinger, H. I.; Brown, H. C.; Abraham, B.; Bond, A. C.; Davidson, N.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H.; Horvitz, L.; Hyde, E. K.; Katz, J. J.; Knight, J.; Lad, R. A.; Mayfield, D. L.; Rapp, L.; Ritter, D. M.; Schwartz, A. M.; Sheft, I.; Tuck, L. D.; Walker, A. O. (1953). "New developments in the chemistry of diborane and the borohydrides. General summary". J. Am. Chem. Soc. 75: 186–90. doi:10.1021/ja01097a049.
- Hermann I Schlesinger and Herbert C Brown (1945) "Preparation of alkali metal compounds". US Patent 2461661. Granted on 1949-02-15; expired on 1966-02-15.
- ^ Banfi, L.; Narisano, E.; Riva, R.; Stiasni, N.; Hiersemann, M. (2004). "Sodium Borohydride". Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rs052. ISBN 978-0471936237.
- Brown, H. C. "Organic Syntheses via Boranes" John Wiley & Sons, Inc. New York: 1975. ISBN 0-471-11280-1. page 260-261
- Lo, Chih-ting F.; Karan, Kunal; Davis, Boyd R. (2007). "Kinetic Studies of Reaction between Sodium Borohydride and Methanol, Water, and Their Mixtures". Industrial & Engineering Chemistry Research. 46 (17): 5478–5484. doi:10.1021/ie0608861.
- "Structural transitions in NaBH under pressure". Appl. Phys. Lett. 87 (26): 261916. 2005. doi:10.1063/1.2158505.
- Filinchuk, Y.; Talyzin, A. V.; Chernyshov, D.; Dmitriev, V. (2007). "High-pressure phase of NaBH4: Crystal structure from synchrotron powder diffraction data". Phys. Rev. B. 76 (9): 092104. Bibcode:2007PhRvB..76i2104F. doi:10.1103/PhysRevB.76.092104. S2CID 122588719.
- Kim, E.; Kumar, R.; Weck, P. F.; Cornelius, A. L.; Nicol, M.; Vogel, S. C.; Zhang, J.; Hartl, M.; Stowe, A. C.; Daemen, L.; Zhao, Y. (2007). "Pressure-driven phase transitions in NaBH4: theory and experiments". J. Phys. Chem. B. 111 (50): 13873–13876. doi:10.1021/jp709840w. PMID 18031032.
- ^ Wietelmann, Ulrich; Felderhoff, Michael; Rittmeyer, Peter (2002). "Hydrides". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a13_199.pub2. ISBN 978-3-527-30673-2. OCLC 751968805.
- Schubert, F.; Lang, K.; Burger, A. (1960) "Alkali metal borohydrides" (Bayer). German patent DE 1088930 19600915 (ChemAbs: 55:120851). Supplement to. to Ger. 1,067,005 (CA 55, 11778i). From the abstract: "Alkali metal borosilicates are treated with alkali metal hydrides in approx. 1:1 ratio at >100 °C with or without H pressure"
- Wu, Ying et al. (2004) Review of Chemical Processes for the Synthesis of Sodium Borohydride. Millennium Cell Inc.
- Ouyang, Liuzhang; Zhong, Hao; Li, Hai-Wen; Zhu, Min (2018). "A Recycling Hydrogen Supply System of NaBH4 Based on a Facile Regeneration Process: A Review". Inorganics. 6: 10. doi:10.3390/inorganics6010010.
- Banfi, Luca; Narisano, Enrica; Riva, Renata; Stiasni, Nikola; Hiersemann, Martin; Yamada, Tohru; Tsubo, Tatsuyuki (2014), "Sodium Borohydride", Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, pp. 1–13, doi:10.1002/047084289x.rs052.pub3, ISBN 9780470842898
- Carey, Francis A. (2016-01-07). Organic chemistry. Giuliano, Robert M., 1954– (Tenth ed.). New York, NY. ISBN 9780073511214. OCLC 915135847.
{{cite book}}
: CS1 maint: location missing publisher (link) - Loudon, Marc (2009). Organic chemistry (5th ed.). Greenwood Village, Colo.: Roberts and Co. ISBN 9780981519432. OCLC 263409353.
- Wigfield, Donald C.; Gowland, Frederick W. (March 1977). "The kinetic role of hydroxylic solvent in the reduction of ketones by sodium borohydride. New proposals for mechanism, transition state geometry, and a comment on the origin of stereoselectivity". The Journal of Organic Chemistry. 42 (6): 1108–1109. doi:10.1021/jo00426a048.
- Wigfield, Donald C. (January 1979). "Stereochemistry and mechanism of ketone reductions by hydride reagents". Tetrahedron. 35 (4): 449–462. doi:10.1016/0040-4020(79)80140-4. ISSN 0040-4020.
- da Costa, Jorge C.S.; Pais, Karla C.; Fernandes, Elisa L.; de Oliveira, Pedro S. M.; Mendonça, Jorge S.; de Souza, Marcus V. N.; Peralta, Mônica A.; Vasconcelos, Thatyana R.A. (2006). "Simple reduction of ethyl, isopropyl and benzyl aromatic esters to alcohols using sodium borohydride-methanol system" (PDF). Arkivoc: 128–133. Retrieved 29 August 2006.
- Dalla, V.; Catteau, J.P.; Pale, P. (1999). "Mechanistic rationale for the NaBH4 reduction of α-keto esters". Tetrahedron Letters. 40 (28): 5193–5196. doi:10.1016/S0040-4039(99)01006-0.
- Periasamy, Mariappan; Thirumalaikumar, Muniappan (2000). "Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis". Journal of Organometallic Chemistry. 609 (1–2): 137–151. doi:10.1016/S0022-328X(00)00210-2.
- Nora de Souza, Marcus Vinícius; Alves Vasconcelos; Thatyana Rocha (1 November 2006). "Recent methodologies mediated by sodium borohydride in the reduction of different classes of compounds". Applied Organometallic Chemistry. 20 (11): 798–810. doi:10.1002/aoc.1137.
- Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN 978-0-471-72091-1
- Brown, Jack D.; Haddenham, Dustin (2013). "Sodium Borohydride and Iodine". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn01598. ISBN 978-0471936237.
- Ryschlewitsch, G. E.; Nainan, K. C. (1974). "Octahydrotriborate (1-) ([B 3 H 8 ]) salts". Inorganic Syntheses. Vol. 15. pp. 111–118. doi:10.1002/9780470132463.ch25. ISBN 9780470132463.
- Lucas, C. R. (1977). "Bis(η -Cyclopentadienyl) [Tetrahydroborato(1−)]Titanium". Inorganic Syntheses. Vol. 17. p. 93. doi:10.1002/9780470132487.ch27. ISBN 9780470132487.
- Istek, A. and Gonteki, E. (2009). "Utilization of sodium borohydride (NaBH4) in kraft pulping process" (PDF). Journal of Environmental Biology. 30 (6): 951–953. PMID 20329388.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Eun Hee Park, Seong Uk Jeong, Un Ho Jung, Sung Hyun Kim, Jaeyoung Lee, Suk Woo Nam, Tae Hoon Lim, Young Jun Park, Yong Ho Yuc (2007): "Recycling of sodium metaborate to borax". International Journal of Hydrogen Energy, volume 32, issue 14, pages 2982-2987. doi:10.1016/j.ijhydene.2007.03.029
- Z. P. Li, B. H. Liu. K. Arai, N. Morigazaki, S. Suda (2003): "Protide compounds in hydrogen storage systems". Journal of Alloys and Compounds, volumes 356–357, pages 469-474. doi:10.1016/S0925-8388(02)01241-0
- Hasan K. Atiyeh and Boyd R. Davis (2007): "Separation of sodium metaborate from sodium borohydride using nanofiltration membranes for hydrogen storage application". International Journal of Hydrogen Energy, volume 32, issue 2, pages 229-236. doi:10.1016/j.ijhydene.2006.06.003
- Stuart Gary, "Hydrogen storage no longer up in the air" in ABC Science 16 August 2012, citing Christian, Meganne; Aguey-Zinsou, Kondo François (2012). "Core–Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH4". ACS Nano. 6 (9): 7739–7751. doi:10.1021/nn3030018. PMID 22873406.
- Masters, Kristin. "How to Prevent and Reverse Foxing in Rare Books". bookstellyouwhy.com. Retrieved 3 April 2018.
- Seyden-Penne, J. (1991) Reductions by the Alumino- and Borohydrides in Organic Synthesis. VCH–Lavoisier: Paris. p. 9. ISBN 978-0-471-19036-3
External links
- National Pollutant Inventory – Boron and compounds
- MSDS for Sodium Borohydride
- Materials & Energy Research Institute Tokyo, Ltd.
- Chemo- and stereoselectivity using Borohydride reagents
- Material Safety Data Sheet Archived 2017-07-10 at the Wayback Machine
Sodium compounds | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inorganic |
| ||||||||||||||
Organic |