Misplaced Pages

Isotopes of palladium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Palladium-102)

Isotopes of palladium (46Pd)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Pd synth 3.63 d ε Rh
γ
Pd 1.02% stable
Pd synth 16.991 d ε Rh
Pd 11.1% stable
Pd 22.3% stable
Pd 27.3% stable
Pd trace 6.5×10 y β Ag
Pd 26.5% stable
Pd 11.7% stable
Standard atomic weight Ar°(Pd)

Natural palladium (46Pd) is composed of six stable isotopes, Pd, Pd, Pd, Pd, Pd, and Pd, although Pd and Pd are theoretically unstable. The most stable radioisotopes are Pd with a half-life of 6.5 million years, Pd with a half-life of 17 days, and Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (Pd) to 128.96 u (Pd). Most of these have half-lives that are less than 30 minutes except Pd (half-life: 8.47 hours), Pd (half-life: 13.7 hours), and Pd (half-life: 21 hours).

The primary decay mode before the most abundant stable isotope, Pd, is electron capture and the primary mode after is beta decay. The primary decay product before Pd is rhodium and the primary product after is silver.

Radiogenic Ag is a decay product of Pd and was first discovered in the Santa Clara meteorite of 1978. The discoverers suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. Pd versus Ag correlations observed in bodies, which have clearly been melted since accretion of the Solar System, must reflect the presence of short-lived nuclides in the early Solar System.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Pd 46 44 89.95737(43)# 10# ms
β? Rh 0+
β, p? Ru
2p? Ru
Pd 46 45 90.95044(45)# 32(3) ms β (96.9%) Rh 7/2+#
β, p (3.1%) Ru
Pd 46 46 91.94119(37) 1.06(3) s β (98.4%) Rh 0+
β, p (1.6%) Ru
Pd 46 47 92.93668(40) 1.17(2) s β (92.6%) Rh (9/2+)
β, p (7.4%) Ru
Pd 46 48 93.9290363(46) 9.1(3) s β (>99.87%) Rh 0+
β, p (<0.13%) Ru
Pd 4883.1(4) keV 515(1) ns IT Pd (14+)
Pd 7209.8(8) keV 206(18) ns IT Pd (19−)
Pd 46 49 94.9248885(33) 7.4(4) s β (99.77%) Rh 9/2+#
β, p (0.23%) Rh
Pd 1875.13(14) keV 13.3(2) s β (88%) Rh (21/2+)
IT (11%) Pd
β, p (0.71%) Ru
Pd 46 50 95.9182137(45) 122(2) s β Rh 0+
Pd 2530.57(23) keV 1.804(7) μs IT Pd 8+#
Pd 46 51 96.9164720(52) 3.10(9) min β Rh 5/2+#
Pd 46 52 97.9126983(51) 17.7(4) min β Rh 0+
Pd 46 53 98.9117731(55) 21.4(2) min β Rh (5/2)+
Pd 46 54 99.908520(19) 3.63(9) d EC Rh 0+
Pd 46 55 100.9082848(49) 8.47(6) h β Rh 5/2+
Pd 46 56 101.90563229(45) Observationally Stable 0+ 0.0102(1)
Pd 46 57 102.90611107(94) 16.991(19) d EC Rh 5/2+
Pd 46 58 103.9040304(14) Stable 0+ 0.1114(8)
Pd 46 59 104.9050795(12) Stable 5/2+ 0.2233(8)
Pd 489.1(3) keV 35.5(5) μs IT Pd 11/2−
Pd 46 60 105.9034803(12) Stable 0+ 0.2733(3)
Pd 46 61 106.9051281(13) 6.5(3)×10 y β Ag 5/2+ trace
Pd 115.74(12) keV 0.85(10) μs IT Pd 1/2+
Pd 214.6(3) keV 21.3(5) s IT Pd 11/2−
Pd 46 62 107.9038918(12) Stable 0+ 0.2646(9)
Pd 46 63 108.9059506(12) 13.59(12) h β Ag 5/2+
Pd 113.4000(14) keV 380(50) ns IT Pd 1/2+
Pd 188.9903(10) keV 4.703(9) min IT Pd 11/2−
Pd 46 64 109.90517288(66) Observationally Stable 0+ 0.1172(9)
Pd 46 65 110.90769036(79) 23.56(9) min β Ag 5/2+
Pd 172.18(8) keV 5.563(13) h IT (76.8%) Pd 11/2−
β (23.2%) Ag
Pd 46 66 111.9073306(70) 21.04(17) h β Ag 0+
Pd 46 67 112.9102619(75) 93(5) s β Ag (5/2+)
Pd 81.1(3) keV 0.3(1) s IT Pd (9/2−)
Pd 46 68 113.9103694(75) 2.42(6) min β Ag 0+
Pd 46 69 114.9136650(19) 25(2) s β Ag (1/2)+
Pd 86.8(29) keV 50(3) s β (92.0%) Ag (7/2−)
IT (8.0%) Pd
Pd 46 70 115.9142979(77) 11.8(4) s β Ag 0+
Pd 46 71 116.9179556(78) 4.3(3) s β Ag (3/2+)
Pd 203.3(3) keV 19.1(7) ms IT Pd (9/2−)
Pd 46 72 117.9190673(27) 1.9(1) s β Ag 0+
Pd 46 73 118.9231238(45) 0.88(2) s β Ag 1/2+, 3/2+
β, n? Ag
Pd 199.1(30) keV 0.85(1) s IT Pd (11/2−)
Pd 46 74 119.9245517(25) 492(33) ms β (>99.3%) Ag 0+
β, n (<0.7%) Ag
Pd 46 75 120.9289513(40) 290(1) ms β (>99.2%) Ag 3/2+#
β, n (<0.8%) Ag
Pd 135.5(5) keV 460(90) ns IT Pd 7/2+#
Pd 160(14) keV 460(90) ns IT Pd 11/2−#
Pd 46 76 121.930632(21) 193(5) ms β Ag 0+
β, n (<2.5%) Ag
Pd 46 77 122.93513(85) 108(1) ms β (90%) Ag 3/2+#
β, n (10%) Ag
Pd 100(50)# keV 100# ms β Ag 11/2−#
IT? Pd
Pd 46 78 123.93731(32)# 88(15) ms β (83%) Ag 0+
β, n (17%) Ag
Pd 1000(800)# keV >20 μs IT Pd 11/2−#
Pd 46 79 124.94207(43)# 60(6) ms β (88%) Ag 3/2+#
β, n (12%) Ag
Pd 100(50)# keV 50# ms β Ag 11/2−#
IT? Pd
Pd 1805.23(18) keV 144(4) ns IT Pd (23/2+)
Pd 46 80 125.94440(43)# 48.6(8) ms β (78%) Ag 0+
β, n (22%) Ag
Pd 2023.5(7) keV 330(40) ns IT Pd (5−)
Pd 2109.7(9) keV 440(30) ns IT Pd (7−)
Pd 2406.0(10) keV 23.0(8) ms β (72%) Ag (10+)
IT (28%) Pd
Pd 46 81 126.94931(54)# 38(2) ms β (>81%) Ag 11/2−#
β, n (<19%) Ag
β, 2n? Ag
Pd 1717.91(23) keV 39(6) μs IT Pd (19/2+)
Pd 46 82 127.95235(54)# 35(3) ms β Ag 0+
β, n? Ag
Pd 2151.0(10) keV 5.8(8) μs IT Pd (8+)
Pd 46 83 128.95933(64)# 31(7) ms β Ag 7/2−#
β, n? Ag
β, 2n? Ag
Pd 46 84 129.96486(32)# 27# ms
β Ag 0+
β, n? Ag
β, 2n? Ag
Pd 46 85 130.97237(32)# 20# ms
β Ag 7/2−#
β, n? Ag
β, 2n? Ag
This table header & footer:
  1. Pd – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Believed to decay by ββ to Ru with a half-life over 7.6×10 y
  9. ^ Fission product
  10. Long-lived fission product
  11. Cosmogenic nuclide, also found as nuclear contamination
  12. Believed to decay by ββ to Cd with a half-life over 2.9×10 years

Palladium-103

Palladium-103 is a radioisotope of the element palladium that has uses in radiation therapy for prostate cancer and uveal melanoma. Palladium-103 may be created from palladium-102 or from rhodium-103 using a cyclotron. Palladium-103 has a half-life of 16.99 days and decays by electron capture to rhodium-103, emitting characteristic x-rays with 21 keV of energy.

Palladium-107

Long-lived fission products
Nuclide t1⁄2 Yield Q βγ
(Ma) (%) (keV)
Tc 0.211 6.1385 294 β
Sn 0.230 0.1084 4050 βγ
Se 0.327 0.0447 151 β
Cs 1.33  6.9110 269 β
Zr 1.53  5.4575 91 βγ
Pd 6.5   1.2499 33 β
I 16.14   0.8410 194 βγ
  1. Decay energy is split among β, neutrino, and γ if any.
  2. Per 65 thermal neutron fissions of U and 35 of Pu.
  3. Has decay energy 380 keV, but its decay product Sb has decay energy 3.67 MeV.
  4. Lower in thermal reactors because Xe, its predecessor, readily absorbs neutrons.

Palladium-107 is the second-longest lived (half-life of 6.5 million years) and least radioactive (decay energy only 33 keV, specific activity 5×10 Ci/g) of the 7 long-lived fission products. It undergoes pure beta decay (without gamma radiation) to Ag, which is stable.

Its yield from thermal neutron fission of uranium-235 is 0.14% per fission, only 1/4 that of iodine-129, and only 1/40 those of Tc, Zr, and Cs. Yield from U is slightly lower, but yield from Pu is much higher, 3.2%. Fast fission or fission of some heavier actinides will produce palladium-107 at higher yields.

One source estimates that palladium produced from fission contains the isotopes Pd (16.9%),Pd (29.3%), Pd (21.3%), Pd (17%), Pd (11.7%) and Pd (3.8%). According to another source, the proportion of Pd is 9.2% for palladium from thermal neutron fission of U, 11.8% for U, and 20.4% for Pu (and the Pu yield of palladium is about 10 times that of U).

Because of this dilution and because Pd has 11 times the neutron absorption cross section, Pd is not amenable to disposal by nuclear transmutation. However, as a noble metal, palladium is not as mobile in the environment as iodine or technetium.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Palladium". CIAAW. 1979.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. W. R. Kelly; G. J. Wasserburg (1978). "Evidence for the existence of Pd in the early solar system". Geophysical Research Letters. 5 (12): 1079–1082. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079.
  5. J. H. Chen; G. J. Wasserburg (1990). "The isotopic composition of Ag in meteorites and the presence of Pd in protoplanets". Geochimica et Cosmochimica Acta. 54 (6): 1729–1743. Bibcode:1990GeCoA..54.1729C. doi:10.1016/0016-7037(90)90404-9.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
  8. ^ Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
  9. ^ Winter, Mark. "Isotopes of palladium". WebElements. The University of Sheffield and WebElements Ltd, UK. Retrieved 4 March 2013.
  10. ^ Weller, A.; Ramaker, T.; Stäger, F.; Blenke, T.; Raiwa, M.; Chyzhevskyi, I.; Kirieiev, S.; Dubchak, S.; Steinhauser, G. (2021). "Detection of the Fission Product Palladium-107 in a Pond Sediment Sample from Chernobyl". Environmental Science & Technology Letters. 8 (8): 656–661. Bibcode:2021EnSTL...8..656W. doi:10.1021/acs.estlett.1c00420.
  11. R. P. Bush (1991). "Recovery of Platinum Group Metals from High Level Radioactive Waste" (PDF). Platinum Metals Review. 35 (4): 202–208. doi:10.1595/003214091X354202208. Archived from the original (PDF) on 2015-09-24. Retrieved 2011-04-02.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: