Misplaced Pages

Jackiw–Teitelboim gravity

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from R = T model)

The R = T model, also known as Jackiw–Teitelboim gravity (named after Roman Jackiw and Claudio Teitelboim), is a theory of gravity with dilaton coupling in one spatial and one time dimension. It should not be confused with the CGHS model or Liouville gravity. The action is given by

S = 1 κ d 2 x g Φ ( R Λ ) {\displaystyle S={\frac {1}{\kappa }}\int d^{2}x\,{\sqrt {-g}}\,\Phi \left(R-\Lambda \right)}

The metric in this case is more amenable to analytical solutions than the general 3+1D case though a canonical reduction for the latter has recently been obtained. For example, in 1+1D, the metric for the case of two mutually interacting bodies can be solved exactly in terms of the Lambert W function, even with an additional electromagnetic field.

By varying with respect to Φ, we get R = Λ {\displaystyle R=\Lambda } on shell, which means the metric is either Anti-de Sitter space or De Sitter space depending upon the sign of Λ.

See also

Dilaton § The dilaton in quantum gravity

References

  1. Mann, Robert; Shiekh, A.; Tarasov, L. (3 Sep 1990). "Classical and quantum properties of two-dimensional black holes". Nuclear Physics. B. 341 (1): 134–154. Bibcode:1990NuPhB.341..134M. doi:10.1016/0550-3213(90)90265-F.
  2. Grumiller, Daniel; Kummer, Wolfgang; Vassilevich, Dmitri (October 2002). "Dilaton Gravity in Two Dimensions". Physics Reports. 369 (4): 327–430. arXiv:hep-th/0204253. Bibcode:2002PhR...369..327G. doi:10.1016/S0370-1573(02)00267-3. S2CID 119497628.
  3. Grumiller, Daniel; Meyer, Rene (2006). "Ramifications of Lineland". Turkish Journal of Physics. 30 (5): 349–378. arXiv:hep-th/0604049. Bibcode:2006TJPh...30..349G. Archived from the original on 22 August 2011.
  4. Scott, T.C.; Zhang, Xiangdong; Mann, Robert; Fee, G.J. (2016). "Canonical reduction for dilatonic gravity in 3 + 1 dimensions". Physical Review D. 93 (8): 084017. arXiv:1605.03431. Bibcode:2016PhRvD..93h4017S. doi:10.1103/PhysRevD.93.084017.
Theories of gravitation
Standard
Newtonian gravity (NG)
General relativity (GR)
Alternatives to
general relativity
Paradigms
Classical
Quantum-mechanical
Unified-field-theoric
Unified-field-theoric and
quantum-mechanical
Generalisations /
extensions of GR
Pre-Newtonian
theories and
toy models
Related topics
Quantum gravity
Central concepts
Toy models
Quantum field theory
in curved spacetime
Black holes
Approaches
String theory
Canonical quantum gravity
Euclidean quantum gravity
Others
Applications
See also: Template:Quantum mechanics topics


Stub icon

This relativity-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: