Misplaced Pages

Real-time outbreak and disease surveillance

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Real-time outbreak and disease surveillance" – news · newspapers · books · scholar · JSTOR (October 2024) (Learn how and when to remove this message)

Real-time outbreak and disease surveillance system (RODS) is a syndromic surveillance system developed by the University of Pittsburgh, Department of Biomedical Informatics. It is "prototype developed at the University of Pittsburgh where real-time clinical data from emergency departments within a geographic region can be integrated to provide an instantaneous picture of symptom patterns and early detection of epidemic events."

RODS uses a combination of various monitoring tools.

  1. The first tool is a moving average with a 120-day sliding phase-I-window.
  2. The second tool is a nonstandard combination of CUSUM and EWMA, where an EWMA is used to predict next-day counts, and a CuSum monitors the residuals from these predictions.
  3. The third monitoring tool in RODS is a recursive least squares (RLS) algorithm, which fits an autoregressive model to the counts and updates estimates continuously by minimizing prediction error. A Shewhart I-chart is then applied to the residuals, using a threshold of 4 standard deviations.
  4. The fourth tool in RODS implements a wavelet approach, which decomposes the time series using Haar wavelets, and uses the lowest resolution to remove long-term trends from the raw series. The residuals are then monitored using an ordinary Shewhart I-chart with a threshold of 4 standard deviations.

References

  1. RODS Laboratory Website
  2. Public Health-Related Activities at the US HHS government website. Accessed December 2, 2010.
  3. Shmueli, G., Burkom, H.S., "Statistical Challenges Facing Early Outbreak Detection in Biosurveillance", Technometrics (Special Issue on Anomaly Detection), vol. 52, issue 1, pp. 39–51, 2010
United States biological defense program
Organizations
Federal
administrative
DHS
DNI
DHHS
DoD
Federal
research
Trans-
departmental
Military
Civilian
Response
Local
State
Federal
Non-
governmental
Academic centers
and think tanks
Government
contractors
Programs
and projects
Threat reduction
Biosurveillance
Biosecurity/Biosurety
Medical intelligence
Disaster response
Technology
and equipment
Protection
Detection
Biocontainment
Law
Treaties
Legislation
International
representation
History
Past biological
incidents
Defunct organizations
and programs
Related topics


Stub icon

This epidemic- or pandemic- related article is a stub. You can help Misplaced Pages by expanding it.

Categories: