Misplaced Pages

Isotopes of samarium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Samarium-148)

Isotopes of samarium (62Sm)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Sm 3.08% stable
Sm synth 340 d ε Pm
Sm trace 9.20×10 y α Nd
Sm 15% 1.066×10 y α Nd
Sm 11.3% 6.3×10 y α Nd
Sm 13.8% stable
Sm 7.37% stable
Sm synth 94.6 y β Eu
Sm 26.7% stable
Sm synth 46.2846 h β Eu
Sm 22.7% stable
Standard atomic weight Ar°(Sm)

Naturally occurring samarium (62Sm) is composed of five stable isotopes, Sm, Sm, Sm, Sm and Sm, and two extremely long-lived radioisotopes, Sm (half life: 1.066×10 y) and Sm (6.3×10 y), with Sm being the most abundant (26.75% natural abundance). Sm (9.20×10 y) is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. It is the longest-lived nuclide that has not yet been confirmed to be primordial.

Other than the naturally occurring isotopes, the longest-lived radioisotopes are Sm, which has a half-life of 94.6 years, and Sm, which has a half-life of 340 days. All of the remaining radioisotopes, which range from Sm to Sm, have half-lives that are less than two days, and the majority of these have half-lives that are less than 48 seconds. This element also has twelve known isomers with the most stable being Sm (t1/2 22.6 minutes), Sm (t1/2 66 seconds) and Sm (t1/2 10.7 seconds).

The long lived isotopes, Sm, Sm, and Sm, primarily decay by alpha decay to isotopes of neodymium. Lighter unstable isotopes of samarium primarily decay by electron capture to isotopes of promethium, while heavier ones decay by beta decay to isotopes of europium. A 2012 paper revising the estimated half-life of Sm from 10.3(5)×10 y to 6.8(7)×10 y was retracted in 2023.

Isotopes of samarium are used in samarium–neodymium dating for determining the age relationships of rocks and meteorites.

Sm is a medium-lived fission product and acts as a neutron poison in the nuclear fuel cycle. The stable fission product Sm is also a neutron poison.

Samarium is theoretically the lightest element with even atomic number with no stable isotopes (all isotopes of it can theoretically go either alpha decay or beta decay or double beta decay), other such elements are those with atomic numbers > 66 (dysprosium, which is the heaviest theoretically stable nuclide).

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Sm 62 67 128.95464(54)# 550(100) ms 5/2+#
Sm 62 68 129.94892(43)# 1# s β Pm 0+
Sm 62 69 130.94611(32)# 1.2(2) s β Pm 5/2+#
β, p (rare) Nd
Sm 62 70 131.94069(32)# 4.0(3) s β Pm 0+
β, p Nd
Sm 62 71 132.93867(21)# 2.90(17) s β Pm (5/2+)
β, p Nd
Sm 62 72 133.93397(21)# 10(1) s β Pm 0+
Sm 62 73 134.93252(17) 10.3(5) s β (99.98%) Pm (7/2+)
β, p (.02%) Nd
Sm 0(300)# keV 2.4(9) s β Pm (3/2+, 5/2+)
Sm 62 74 135.928276(13) 47(2) s β Pm 0+
Sm 2264.7(11) keV 15(1) μs (8−)
Sm 62 75 136.92697(5) 45(1) s β Pm (9/2−)
Sm 180(50)# keV 20# s β Pm 1/2+#
Sm 62 76 137.923244(13) 3.1(2) min β Pm 0+
Sm 62 77 138.922297(12) 2.57(10) min β Pm 1/2+
Sm 457.40(22) keV 10.7(6) s IT (93.7%) Sm 11/2−
β (6.3%) Pm
Sm 62 78 139.918995(13) 14.82(12) min β Pm 0+
Sm 62 79 140.918476(9) 10.2(2) min β Pm 1/2+
Sm 176.0(3) keV 22.6(2) min β (99.69%) Pm 11/2−
IT (.31%) Sm
Sm 62 80 141.915198(6) 72.49(5) min β Pm 0+
Sm 62 81 142.914628(4) 8.75(8) min β Pm 3/2+
Sm 753.99(16) keV 66(2) s IT (99.76%) Sm 11/2−
β (.24%) Pm
Sm 2793.8(13) keV 30(3) ms 23/2(−)
Sm 62 82 143.911999(3) Observationally stable 0+ 0.0307(7)
Sm 2323.60(8) keV 880(25) ns 6+
Sm 62 83 144.913410(3) 340(3) d EC Pm 7/2−
Sm 8786.2(7) keV 990(170) ns
(49/2+)
Sm 62 84 145.913041(4) 9.20(26)×10 y α Nd 0+ Trace
Sm 62 85 146.9148979(26) 1.066(5)×10 y α Nd 7/2− 0.1499(18)
Sm 62 86 147.9148227(26) 6.3(13)×10 y α Nd 0+ 0.1124(10)
Sm 62 87 148.9171847(26) Observationally stable 7/2− 0.1382(7)
Sm 62 88 149.9172755(26) Observationally stable 0+ 0.0738(1)
Sm 62 89 150.9199324(26) 94.6(6) y β Eu 5/2−
Sm 261.13(4) keV 1.4(1) μs (11/2)−
Sm 62 90 151.9197324(27) Observationally stable 0+ 0.2675(16)
Sm 62 91 152.9220974(27) 46.2846(23) h β Eu 3/2+
Sm 98.37(10) keV 10.6(3) ms IT Sm 11/2−
Sm 62 92 153.9222093(27) Observationally stable 0+ 0.2275(29)
Sm 62 93 154.9246402(28) 22.3(2) min β Eu 3/2−
Sm 62 94 155.925528(10) 9.4(2) h β Eu 0+
Sm 1397.55(9) keV 185(7) ns 5−
Sm 62 95 156.92836(5) 8.03(7) min β Eu (3/2−)
Sm 62 96 157.92999(8) 5.30(3) min β Eu 0+
Sm 62 97 158.93321(11) 11.37(15) s β Eu 5/2−
Sm 62 98 159.93514(21)# 9.6(3) s β Eu 0+
Sm 62 99 160.93883(32)# 4.349+0.425
−0.441 s
β Eu 7/2+#
Sm 62 100 161.94122(54)# 3.369+0.200
−0.303 s
β Eu 0+
Sm 62 101 162.94536(75)# 1.744+0.180
−0.204 s
β Eu 1/2−#
Sm 62 102 163.94828(86)# 1.422+0.54
−0.59 s
β Eu 0+
Sm 62 103 164.95298(97)# 592+51
−55 ms
β (98.64%) Eu 5/2−#
β, n (1.36%) Eu
Sm 62 104 396+56
−63 ms
β (95.62%) Eu 0+
β, n (4.38%) Eu
Sm 62 105 334+83
−78 ms
β Eu
β, n Eu
Sm 62 106 353+210
−164 ms
β Eu 0+
β, n Eu
This table header & footer:
  1. Sm – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    IT: Isomeric transition


    p: Proton emission
  7. Bold italics symbol as daughter – Daughter product is nearly stable.
  8. Bold symbol as daughter – Daughter product is stable.
  9. ( ) spin value – Indicates spin with weak assignment arguments.
  10. Believed to undergo ββ decay to Nd
  11. ^ Primordial radioisotope
  12. ^ Fission product
  13. Used in Samarium–neodymium dating
  14. ^ Neutron poison in reactors
  15. Believed to undergo α decay to Nd with a half-life over 2×10 years
  16. Believed to undergo α decay to Nd
  17. Believed to undergo α decay to Nd
  18. Believed to undergo ββ decay to Gd with a half-life over 2.3×10 years

Samarium-149

Samarium-149 (Sm) is an observationally stable isotope of samarium (predicted to decay, but no decays have ever been observed, giving it a half-life at least several orders of magnitude longer than the age of the universe), and a product of the decay chain from the fission product Nd (yield 1.0888%). Sm is a neutron-absorbing nuclear poison with significant effect on nuclear reactor operation, second only to Xe. Its neutron cross section is 40140 barns for thermal neutrons.

The equilibrium concentration (and thus the poisoning effect) builds to an equilibrium value in about 500 hours (about 20 days) of reactor operation, and since Sm is stable, the concentration remains essentially constant during further reactor operation. This contrasts with xenon-135, which accumulates from the beta decay of iodine-135 (a short lived fission product) and has a high neutron cross section, but itself decays with a half-life of 9.2 hours (so does not remain in constant concentration long after the reactor shutdown), causing the so-called xenon pit.

Samarium-151

Medium-lived fission products
t½
(year)
Yield
(%)
Q
(keV)
βγ
Eu  4.76 0.0803  252 βγ
Kr 10.76 0.2180  687 βγ
Cd 14.1  0.0008  316 β
Sr 28.9  4.505   2826 β
Cs 30.23 6.337   1176 βγ
Sn 43.9  0.00005 390 βγ
Sm 94.6  0.5314  77 β
Yield, % per fission
Thermal Fast 14 MeV
Th not fissile 0.399 ± 0.065 0.165 ± 0.035
U 0.333 ± 0.017 0.312 ± 0.014 0.49 ± 0.11
U 0.4204 ± 0.0071 0.431 ± 0.015 0.388 ± 0.061
U not fissile 0.810 ± 0.012 0.800 ± 0.057
Pu 0.776 ± 0.018 0.797 ± 0.037 ?
Pu 0.86 ± 0.24 0.910 ± 0.025 ?

Samarium-151 (Sm) has a half-life of 94.6 years, undergoing low-energy beta decay, and has a fission product yield of 0.4203% for thermal neutrons and U, about 39% of Sm's yield. The yield is somewhat higher for Pu.

Its neutron absorption cross section for thermal neutrons is high at 15200 barns, about 38% of Sm's absorption cross section, or about 20 times that of U. Since the ratios between the production and absorption rates of Sm and Sm are almost equal, the two isotopes should reach similar equilibrium concentrations. Since Sm reaches equilibrium in about 500 hours (20 days), Sm should reach equilibrium in about 50 days.

Since nuclear fuel is used for several years (burnup) in a nuclear power plant, the final amount of Sm in the spent nuclear fuel at discharge is only a small fraction of the total Sm produced during the use of the fuel. According to one study, the mass fraction of Sm in spent fuel is about 0.0025 for heavy loading of MOX fuel and about half that for uranium fuel, which is roughly two orders of magnitude less than the mass fraction of about 0.15 for the medium-lived fission product Cs. The decay energy of Sm is also about an order of magnitude less than that of Cs. The low yield, low survival rate, and low decay energy mean that Sm has insignificant nuclear waste impact compared to the two main medium-lived fission products Cs and Sr.

Samarium-153

Samarium-153 (Sm) has a half-life of 46.3 hours, undergoing β decay into Eu. As a component of samarium lexidronam, it is used in palliation of bone cancer. It is treated by the body in a similar manner to calcium, and it localizes selectively to bone.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1). doi:10.1038/s41598-024-64104-6. PMC 11294585.
  3. "Standard Atomic Weights: Samarium". CIAAW. 2005.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Samir Maji; et al. (2006). "Separation of samarium and neodymium: a prerequisite for getting signals from nuclear synthesis". Analyst. 131 (12): 1332–1334. Bibcode:2006Ana...131.1332M. doi:10.1039/b608157f. PMID 17124541.
  6. He, M.; Shen, H.; Shi, G.; Yin, X.; Tian, W.; Jiang, S. (2009). "Half-life of Sm remeasured". Physical Review C. 80 (6): 064305. Bibcode:2009PhRvC..80f4305H. doi:10.1103/PhysRevC.80.064305.
  7. ^ Kinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C. M.; DiGiovine, B.; Greene, J. P.; Henderson, D. J.; Jiang, C. L.; Marley, S. T.; Nakanishi, T.; Pardo, R. C.; Rehm, K. E.; Robertson, D.; Scott, R.; Schmitt, C.; Tang, X. D.; Vondrasek, R.; Yokoyama, A. (30 March 2012). "A Shorter 146Sm Half-Life Measured and Implications for 146Sm-142Nd Chronology in the Solar System". Science. 335 (6076): 1614–1617. arXiv:1109.4805. Bibcode:2012Sci...335.1614K. doi:10.1126/science.1215510. ISSN 0036-8075. PMID 22461609. S2CID 206538240. (Retracted, see doi:10.1126/science.adh7739, PMID 36996231,  Retraction Watch)
  8. ^ Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A. 55 (140): 4–6. arXiv:1908.11458. Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID 201664098.
  9. ^ Kiss, G. G.; Vitéz-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region". The Astrophysical Journal. 936 (107): 107. Bibcode:2022ApJ...936..107K. doi:10.3847/1538-4357/ac80fc. hdl:2117/375253.
  10. https://www-nds.iaea.org/sgnucdat/c3.htm Cumulative Fission Yields, IAEA
  11. Christophe Demazière. Reactor Physics Calculations on MOX Fuel in Boiling Water Reactors (BWRs) (PDF) (Report). OECD Nuclear Energy Agency. Figure 2, page 6
  12. Ballantyne, Jane C; Fishman, Scott M; Rathmell, James P. (2009-10-01). Bonica's Management of Pain. Lippincott Williams & Wilkins. pp. 655–. ISBN 978-0-7817-6827-6. Retrieved 19 July 2011.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: