| ||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Si) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||
Silicon (14Si) has 25 known isotopes, with mass numbers ranging from 22 to 46. Si (the most abundant isotope, at 92.23%), Si (4.67%), and Si (3.1%) are stable. The longest-lived radioisotope is Si, which is produced by cosmic ray spallation of argon. Its half-life has been determined to be approximately 150 years (with decay energy 0.21 MeV), and it decays by beta emission to P (which has a 14.27-day half-life) and then to S. After Si, Si has the second longest half-life at 157.3 minutes. All others have half-lives under 7 seconds.
List of isotopes
Nuclide |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
Si | 14 | 8 | 22.03611(54)# | 28.7(11) ms | β, p (62%) | Mg | 0+ | ||||||||||||
β (37%) | Al | ||||||||||||||||||
β, 2p (0.7%) | Na | ||||||||||||||||||
Si | 14 | 9 | 23.02571(54)# | 42.3(4) ms | β, p (88%) | Mg | 3/2+# | ||||||||||||
β (8%) | Al | ||||||||||||||||||
β, 2p (3.6%) | Na | ||||||||||||||||||
Si | 14 | 10 | 24.011535(21) | 143.2 (21) ms | β (65.5%) | Al | 0+ | ||||||||||||
β, p (34.5%) | Mg | ||||||||||||||||||
Si | 14 | 11 | 25.004109(11) | 220.6(10) ms | β (65%) | Al | 5/2+ | ||||||||||||
β, p (35%) | Mg | ||||||||||||||||||
Si | 14 | 12 | 25.99233382(12) | 2.2453(7) s | β | Al | 0+ | ||||||||||||
Si | 14 | 13 | 26.98670469(12) | 4.117(14) s | β | Al | 5/2+ | ||||||||||||
Si | 14 | 14 | 27.97692653442(55) | Stable | 0+ | 0.92223(19) | 0.92205–0.92241 | ||||||||||||
Si | 14 | 15 | 28.97649466434(60) | Stable | 1/2+ | 0.04685(8) | 0.04678–0.04692 | ||||||||||||
Si | 14 | 16 | 29.973770137(23) | Stable | 0+ | 0.03092(11) | 0.03082–0.03102 | ||||||||||||
Si | 14 | 17 | 30.975363196(46) | 157.16(20) min | β | P | 3/2+ | ||||||||||||
Si | 14 | 18 | 31.97415154(32) | 157(7) y | β | P | 0+ | trace | cosmogenic | ||||||||||
Si | 14 | 19 | 32.97797696(75) | 6.18(18) s | β | P | 3/2+ | ||||||||||||
Si | 14 | 20 | 33.97853805(86) | 2.77(20) s | β | P | 0+ | ||||||||||||
Si | 4256.1(4) keV | <210 ns | IT | Si | (3−) | ||||||||||||||
Si | 14 | 21 | 34.984550(38) | 780(120) ms | β | P | 7/2−# | ||||||||||||
β, n? | P | ||||||||||||||||||
Si | 14 | 22 | 35.986649(77) | 503(2) ms | β (88%) | P | 0+ | ||||||||||||
β, n (12%) | P | ||||||||||||||||||
Si | 14 | 23 | 36.99295(12) | 141.0(35) ms | β (83%) | P | (5/2−) | ||||||||||||
β, n (17%) | P | ||||||||||||||||||
β, 2n? | P | ||||||||||||||||||
Si | 14 | 24 | 37.99552(11) | 63(8) ms | β (75%) | P | 0+ | ||||||||||||
β, n (25%) | P | ||||||||||||||||||
Si | 14 | 25 | 39.00249(15) | 41.2(41) ms | β (67%) | P | (5/2−) | ||||||||||||
β, n (33%) | P | ||||||||||||||||||
β, 2n? | P | ||||||||||||||||||
Si | 14 | 26 | 40.00608(13) | 31.2(26) ms | β (62%) | P | 0+ | ||||||||||||
β, n (38%) | P | ||||||||||||||||||
β, 2n? | P | ||||||||||||||||||
Si | 14 | 27 | 41.01417(32)# | 20.0(25) ms | β, n (>55%) | P | 7/2−# | ||||||||||||
β (<45%) | P | ||||||||||||||||||
β, 2n? | P | ||||||||||||||||||
Si | 14 | 28 | 42.01808(32)# | 15.5(4 (stat), 16 (sys)) ms | β (51%) | P | 0+ | ||||||||||||
β, n (48%) | P | ||||||||||||||||||
β, 2n (1%) | P | ||||||||||||||||||
Si | 14 | 29 | 43.02612(43)# | 13(4 (stat), 2 (sys)) ms | β, n (52%) | P | 3/2−# | ||||||||||||
β (27%) | P | ||||||||||||||||||
β, 2n (21%) | P | ||||||||||||||||||
Si | 14 | 30 | 44.03147(54)# | 4# ms | β? | P | 0+ | ||||||||||||
β, n? | P | ||||||||||||||||||
β, 2n? | P | ||||||||||||||||||
Si | 14 | 31 | 45.03982(64)# | 4# ms | 3/2−# | ||||||||||||||
Si | 14 | 32 | |||||||||||||||||
This table header & footer: |
- Si – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
Silicon-28
Silicon-28, the most abundant isotope of silicon, is of particular interest in the construction of quantum computers when highly enriched, as the presence of Si in a sample of silicon contributes to quantum decoherence. Extremely pure (>99.9998%) samples of Si can be produced through selective ionization and deposition of Si from silane gas. Due to the extremely high purity that can be obtained in this manner, the Avogadro project sought to develop a new definition of the kilogram by making a 93.75 mm (3.691 in) sphere of the isotope and determining the exact number of atoms in the sample.
Silicon-28 is produced in stars during the alpha process and the oxygen-burning process, and drives the silicon-burning process in massive stars shortly before they go supernova.
Silicon-29
Silicon-29 is of note as the only stable silicon isotope with a nuclear spin (I = 1/2). As such, it can be employed in nuclear magnetic resonance and hyperfine transition studies, for example to study the properties of the so-called A-center defect in pure silicon.
Silicon-34
Silicon-34 is a radioactive isotope with a half-life of 2.8 seconds. In addition to the usual N = 20 closed shell, the nucleus also shows a strong Z = 14 shell closure, making it behave like a doubly magic spherical nucleus, except that it is also located two protons above an island of inversion. Silicon-34 has an unusual "bubble" structure where the proton distribution is less dense at the center than near the surface, as the 2s1/2 proton orbital is almost unoccupied in the ground state, unlike in S where it is almost full. Silicon-34 is one of the known cluster decay emission particles; it is produced in the decay of Cm with a branching ratio of approximately 1×10.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Silicon". CIAAW. 2009.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi:10.1103/PhysRevLett.129.212501. PMID 36461950. S2CID 253600995.
- ^ Yoshimoto, Masahiro; Suzuki, Hiroshi; Fukuda, Naoki; Takeda, Hiroyuki; Shimizu, Yohei; Yanagisawa, Yoshiyuki; Sato, Hiromi; Kusaka, Kensuke; Ohtake, Masao; Yoshida, Koichi; Michimasa, Shin’ichiro (2024). "Discovery of Neutron-Rich Silicon Isotopes Si". Progress of Theoretical and Experimental Physics. 2024 (10). Oxford University Press (OUP). doi:10.1093/ptep/ptae155. ISSN 2050-3911.
- "Beyond Six Nines: Ultra-enriched Silicon Paves the Road to Quantum Computing". NIST. 2014-08-11.
- Dwyer, K J; Pomeroy, J M; Simons, D S; Steffens, K L; Lau, J W (2014-08-30). "Enriching 28 Si beyond 99.9998 % for semiconductor quantum computing". Journal of Physics D: Applied Physics. 47 (34): 345105. doi:10.1088/0022-3727/47/34/345105. ISSN 0022-3727.
- Powell, Devin (1 July 2008). "Roundest Objects in the World Created". New Scientist. Retrieved 16 June 2015.
- Keats, Jonathon. "The Search for a More Perfect Kilogram". Wired. Vol. 19, no. 10. Retrieved 16 December 2023.
- Woosley, S.; Janka, T. (2006). "The physics of core collapse supernovae". Nature Physics. 1 (3): 147–154. arXiv:astro-ph/0601261. Bibcode:2005NatPh...1..147W. CiteSeerX 10.1.1.336.2176. doi:10.1038/nphys172. S2CID 118974639.
- Narlikar, Jayant V. (1995). From Black Clouds to Black Holes. World Scientific. p. 94. ISBN 978-9810220334.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
- Watkins, G. D.; Corbett, J. W. (1961-02-15). "Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si- A Center". Physical Review. 121 (4): 1001–1014. Bibcode:1961PhRv..121.1001W. doi:10.1103/PhysRev.121.1001. ISSN 0031-899X.
- Lică, R.; Rotaru, F.; Borge, M. J. G.; Grévy, S.; Negoiţă, F.; Poves, A.; Sorlin, O.; Andreyev, A. N.; Borcea, R.; Costache, C.; De Witte, H.; Fraile, L. M.; Greenlees, P. T.; Huyse, M.; Ionescu, A.; Kisyov, S.; Konki, J.; Lazarus, I.; Madurga, M.; Mărginean, N.; Mărginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Nowacki, F.; Page, R. D.; Pakarinen, J.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Şerban, A.; Sotty, C. O.; Stan, L.; Stănoiu, M.; Tengblad, O.; Turturică, A.; Van Duppen, P.; Warr, N.; Dessagne, Ph.; Stora, T.; Borcea, C.; Călinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Franchoo, S.; Gheorghe, I.; Morfouace, P.; Morel, P.; Mrazek, J.; Pietreanu, D.; Sohler, D.; Stefan, I.; Şuvăilă, R.; Toma, S.; Ur, C. A. (11 September 2019). "Normal and intruder configurations in Si 34 populated in the β − decay of Mg 34 and Al 34". Physical Review C. 100 (3): 034306. arXiv:1908.11626. doi:10.1103/PhysRevC.100.034306.
- "Physicists find atomic nucleus with a 'bubble' in the middle". 24 October 2016. Retrieved 26 December 2023.
- Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.-P.; Gade, A.; Iwasaki, H.; Khan, E.; Lepailleur, A.; Recchia, F.; Roger, T.; Rotaru, F.; Sohler, D.; Stanoiu, M.; Stroberg, S. R.; Tostevin, J. A.; Vandebrouck, M.; Weisshaar, D.; Wimmer, K. (February 2017). "A proton density bubble in the doubly magic 34Si nucleus". Nature Physics. 13 (2): 152–156. arXiv:1707.03583. doi:10.1038/nphys3916.
- Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.