Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.
Statement
Let
X
(
t
)
,
t
≥
0
{\displaystyle X(t),\,t\geq 0}
be a non-negative right-continuous
(
F
t
)
t
≥
0
{\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}}
-adapted process . Assume that
A
:
[
0
,
∞
)
→
[
0
,
∞
)
{\displaystyle A:[0,\infty )\to [0,\infty )}
is a deterministic non-decreasing càdlàg function with
A
(
0
)
=
0
{\displaystyle A(0)=0}
and let
H
(
t
)
,
t
≥
0
{\displaystyle H(t),\,t\geq 0}
be a non-decreasing and càdlàg adapted process starting from
H
(
0
)
≥
0
{\displaystyle H(0)\geq 0}
. Further, let
M
(
t
)
,
t
≥
0
{\displaystyle M(t),\,t\geq 0}
be an
(
F
t
)
t
≥
0
{\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}}
- local martingale with
M
(
0
)
=
0
{\displaystyle M(0)=0}
and càdlàg paths.
Assume that for all
t
≥
0
{\displaystyle t\geq 0}
,
X
(
t
)
≤
∫
0
t
X
∗
(
u
−
)
d
A
(
u
)
+
M
(
t
)
+
H
(
t
)
,
{\displaystyle X(t)\leq \int _{0}^{t}X^{*}(u^{-})\,dA(u)+M(t)+H(t),}
where
X
∗
(
u
)
:=
sup
r
∈
[
0
,
u
]
X
(
r
)
{\displaystyle X^{*}(u):=\sup _{r\in }X(r)}
.
and define
c
p
=
p
−
p
1
−
p
{\displaystyle c_{p}={\frac {p^{-p}}{1-p}}}
. Then the following estimates hold for
p
∈
(
0
,
1
)
{\displaystyle p\in (0,1)}
and
T
>
0
{\displaystyle T>0}
:
If
E
(
H
(
T
)
p
)
<
∞
{\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty }
and
H
{\displaystyle H}
is predictable, then
E
[
(
X
∗
(
T
)
)
p
|
F
0
]
≤
c
p
p
E
[
(
H
(
T
)
)
p
|
F
0
]
exp
{
c
p
1
/
p
A
(
T
)
}
{\displaystyle \mathbb {E} \left\leq {\frac {c_{p}}{p}}\mathbb {E} \left\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }
;
If
E
(
H
(
T
)
p
)
<
∞
{\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty }
and
M
{\displaystyle M}
has no negative jumps, then
E
[
(
X
∗
(
T
)
)
p
|
F
0
]
≤
c
p
+
1
p
E
[
(
H
(
T
)
)
p
|
F
0
]
exp
{
(
c
p
+
1
)
1
/
p
A
(
T
)
}
{\displaystyle \mathbb {E} \left\leq {\frac {c_{p}+1}{p}}\mathbb {E} \left\exp \left\lbrace (c_{p}+1)^{1/p}A(T)\right\rbrace }
;
If
E
H
(
T
)
<
∞
,
{\displaystyle \mathbb {E} H(T)<\infty ,}
then
E
[
(
X
∗
(
T
)
)
p
|
F
0
]
≤
c
p
p
(
E
[
H
(
T
)
|
F
0
]
)
p
exp
{
c
p
1
/
p
A
(
T
)
}
{\displaystyle \displaystyle {\mathbb {E} \left\leq {\frac {c_{p}}{p}}\left(\mathbb {E} \left\right)^{p}\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }}
;
Proof
It has been proven by Lenglart's inequality .
References
^ Mehri, Sima; Scheutzow, Michael (2021). "A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise" . Latin Americal Journal of Probability and Mathematical Statistics . 18 : 193–209. arXiv :1908.10646 . doi :10.30757/ALEA.v18-09 . S2CID 201660248 .
^ von Renesse, Max; Scheutzow, Michael (2010). "Existence and uniqueness of solutions of stochastic functional differential equations" . Random Oper. Stoch. Equ . 18 (3): 267–284. arXiv :0812.1726 . doi :10.1515/rose.2010.015 . S2CID 18595968 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑