Misplaced Pages

Stochastic Gronwall inequality

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources.
Find sources: "Stochastic Gronwall inequality" – news · newspapers · books · scholar · JSTOR (September 2021) (Learn how and when to remove this message)

Stochastic Gronwall inequality is a generalization of Gronwall's inequality and has been used for proving the well-posedness of path-dependent stochastic differential equations with local monotonicity and coercivity assumption with respect to supremum norm.

Statement

Let X ( t ) , t 0 {\displaystyle X(t),\,t\geq 0} be a non-negative right-continuous ( F t ) t 0 {\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}} -adapted process. Assume that A : [ 0 , ) [ 0 , ) {\displaystyle A:[0,\infty )\to [0,\infty )} is a deterministic non-decreasing càdlàg function with A ( 0 ) = 0 {\displaystyle A(0)=0} and let H ( t ) , t 0 {\displaystyle H(t),\,t\geq 0} be a non-decreasing and càdlàg adapted process starting from H ( 0 ) 0 {\displaystyle H(0)\geq 0} . Further, let M ( t ) , t 0 {\displaystyle M(t),\,t\geq 0} be an ( F t ) t 0 {\displaystyle ({\mathcal {F}}_{t})_{t\geq 0}} - local martingale with M ( 0 ) = 0 {\displaystyle M(0)=0} and càdlàg paths.

Assume that for all t 0 {\displaystyle t\geq 0} ,

X ( t ) 0 t X ( u ) d A ( u ) + M ( t ) + H ( t ) , {\displaystyle X(t)\leq \int _{0}^{t}X^{*}(u^{-})\,dA(u)+M(t)+H(t),} where X ( u ) := sup r [ 0 , u ] X ( r ) {\displaystyle X^{*}(u):=\sup _{r\in }X(r)} .

and define c p = p p 1 p {\displaystyle c_{p}={\frac {p^{-p}}{1-p}}} . Then the following estimates hold for p ( 0 , 1 ) {\displaystyle p\in (0,1)} and T > 0 {\displaystyle T>0} :

  • If E ( H ( T ) p ) < {\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty } and H {\displaystyle H} is predictable, then E [ ( X ( T ) ) p | F 0 ] c p p E [ ( H ( T ) ) p | F 0 ] exp { c p 1 / p A ( T ) } {\displaystyle \mathbb {E} \left\leq {\frac {c_{p}}{p}}\mathbb {E} \left\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace } ;
  • If E ( H ( T ) p ) < {\displaystyle \mathbb {E} {\big (}H(T)^{p}{\big )}<\infty } and M {\displaystyle M} has no negative jumps, then E [ ( X ( T ) ) p | F 0 ] c p + 1 p E [ ( H ( T ) ) p | F 0 ] exp { ( c p + 1 ) 1 / p A ( T ) } {\displaystyle \mathbb {E} \left\leq {\frac {c_{p}+1}{p}}\mathbb {E} \left\exp \left\lbrace (c_{p}+1)^{1/p}A(T)\right\rbrace } ;
  • If E H ( T ) < , {\displaystyle \mathbb {E} H(T)<\infty ,} then E [ ( X ( T ) ) p | F 0 ] c p p ( E [ H ( T ) | F 0 ] ) p exp { c p 1 / p A ( T ) } {\displaystyle \displaystyle {\mathbb {E} \left\leq {\frac {c_{p}}{p}}\left(\mathbb {E} \left\right)^{p}\exp \left\lbrace c_{p}^{1/p}A(T)\right\rbrace }} ;

Proof

It has been proven by Lenglart's inequality.

References

  1. ^ Mehri, Sima; Scheutzow, Michael (2021). "A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise". Latin Americal Journal of Probability and Mathematical Statistics. 18: 193–209. arXiv:1908.10646. doi:10.30757/ALEA.v18-09. S2CID 201660248.
  2. ^ von Renesse, Max; Scheutzow, Michael (2010). "Existence and uniqueness of solutions of stochastic functional differential equations". Random Oper. Stoch. Equ. 18 (3): 267–284. arXiv:0812.1726. doi:10.1515/rose.2010.015. S2CID 18595968.
Categories: