Misplaced Pages

Isotopes of technetium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Technetium-100)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of technetium" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message)

Isotopes of technetium (43Tc)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Tc synth 61.96 d β Mo
IT Tc
Tc synth 4.28 d β Mo
Tc synth 4.21×10 y ε Mo
Tc synth 91.1 d IT Tc
ε Mo
Tc synth 4.2×10 y β Ru
Tc trace 2.111×10 y β Ru
Tc synth 6.01 h IT Tc
β Ru

Technetium (43Tc) is one of the two elements with Z < 83 that have no stable isotopes; the other such element is promethium. It is primarily artificial, with only trace quantities existing in nature produced by spontaneous fission (there are an estimated 2.5×10 grams of Tc per gram of pitchblende) or neutron capture by molybdenum. The first isotopes to be synthesized were Tc and Tc in 1936, the first artificial element to be produced. The most stable radioisotopes are Tc (half-life of 4.21 million years), Tc (half-life: 4.2 million years), and Tc (half-life: 211,100 years).

Thirty-three other radioisotopes have been characterized with atomic masses ranging from Tc to Tc. Most of these have half-lives that are less than an hour; the exceptions are Tc (half-life: 2.75 hours), Tc (half-life: 4.883 hours), Tc (half-life: 20 hours), and Tc (half-life: 4.28 days).

Technetium also has numerous meta states. Tc is the most stable, with a half-life of 91.0 days (0.097 MeV). This is followed by Tc (half-life: 61 days, 0.038 MeV) and Tc (half-life: 6.04 hours, 0.143 MeV). Tc only emits gamma rays, subsequently decaying to Tc.

For isotopes lighter than Tc, the primary decay mode is electron capture to isotopes of molybdenum. For the heavier isotopes, the primary mode is beta emission to isotopes of ruthenium, with the exception that Tc can decay both by beta emission and electron capture.

Technetium-99m is the hallmark technetium isotope employed in the nuclear medicine industry. Its low-energy isomeric transition, which yields a gamma-ray at ~140.5 keV, is ideal for imaging using Single Photon Emission Computed Tomography (SPECT). Several technetium isotopes, such as Tc, Tc, and Tc, which are produced via (p,n) reactions using a cyclotron on molybdenum targets, have also been identified as potential Positron Emission Tomography (PET) or gamma-emitting agents for medical imaging. Technetium-101 has been produced using a D-D fusion-based neutron generator from the Mo(n,γ)Mo reaction on natural molybdenum and subsequent beta-minus decay of Mo to Tc. Despite its shorter half-life (i.e., 14.22 min), Tc exhibits unique decay characteristics suitable for radioisotope diagnostic or therapeutic procedures, where it has been proposed that its implementation, as a supplement for dual-isotopic imaging or replacement for Tc, could be performed by on-site production and dispensing at the point of patient care.

Technetium-99 is the most common and most readily available isotope, as it is a major fission product from fission of actinides like uranium and plutonium with a fission product yield of 6% or more, and in fact the most significant long-lived fission product. Lighter isotopes of technetium are almost never produced in fission because the initial fission products normally have a higher neutron/proton ratio than is stable for their mass range, and therefore undergo beta decay until reaching the ultimate product. Beta decay of fission products of mass 95–98 stops at the stable isotopes of molybdenum of those masses and does not reach technetium. For mass 100 and greater, the technetium isotopes of those masses are very short-lived and quickly beta decay to isotopes of ruthenium. Therefore, the technetium in spent nuclear fuel is practically all Tc. In the presence of fast neutrons a small amount of
Tc will be produced by (n,2n) "knockout" reactions. If nuclear transmutation of fission-derived Technetium or Technetium waste from medical applications is desired, fast neutrons are therefore not desirable as the long lived
Tc increases rather than reducing the longevity of the radioactivity in the material.

One gram of Tc produces 6.2×10 disintegrations a second (that is, 0.62 GBq/g).

Technetium has no primordial isotopes and does not occur in nature in significant quantities, and thus a standard atomic weight cannot be given.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Tc 43 43 85.94464(32)# 55(7) ms β Mo (0+)
Tc 1524(10) keV 1.10(12) μs IT Tc (6+)
Tc 43 44 86.9380672(45) 2.14(17) s β Mo 9/2+#
β, p (<0.7%) Nb
Tc 71(1) keV 647(24) ns IT Tc 7/2+#
Tc 43 45 87.9337942(44) 6.4(8) s β Mo (2+)
Tc 70(3) keV 5.8(2) s β Mo (6+)
Tc 95(1) keV 146(12) ns IT Tc (4+)
Tc 43 46 88.9276486(41) 12.8(9) s β Mo (9/2+)
Tc 62.6(5) keV 12.9(8) s β Mo (1/2−)
Tc 43 47 89.9240739(11) 49.2(4) s β Mo (8+)
Tc 144.0(17) keV 8.7(2) s β Mo 1+
Tc 43 48 90.9184250(25) 3.14(2) min β Mo (9/2)+
Tc 139.3(3) keV 3.3(1) min β (99%) Mo (1/2)−
Tc 43 49 91.9152698(33) 4.25(15) min β Mo (8)+
Tc 270.09(8) keV 1.03(6) μs IT Tc (4+)
Tc 529.42(13) keV <0.1 μs IT Tc (3+)
Tc 711.33(15) keV <0.1 μs IT Tc 1+
Tc 43 50 92.9102451(11) 2.75(5) h β Mo 9/2+
Tc 391.84(8) keV 43.5(10) min IT (77.4%) Tc 1/2−
β (22.6%) Mo
Tc 2185.16(15) keV 10.2(3) μs IT Tc (17/2)−
Tc 43 51 93.9096523(44) 293(1) min β Mo 7+
Tc 76(3) keV 52(1) min β (>99.82%) Mo (2)+
IT (<0.18%) Tc
Tc 43 52 94.9076523(55) 19.258(26) h β Mo 9/2+
Tc 38.91(4) keV 61.96(24) d β (96.1%) Mo 1/2−
IT (3.9%) Tc
Tc 43 53 95.9078667(55) 4.28(7) d β Mo 7+
Tc 34.23(4) keV 51.5(10) min IT (98.0%) Tc 4+
β (2.0%) Mo
Tc 43 54 96.9063607(44) 4.21(16)×10 y EC Mo 9/2+
Tc 96.57(6) keV 91.1(6) d IT (96.06%) Tc 1/2−
EC (3.94%) Mo
Tc 43 55 97.9072112(36) 4.2(3)×10 y β Ru 6+
Tc 90.77(16) keV 14.7(5) μs IT Tc (2,3)−
Tc 43 56 98.90624968(97) 2.111(12)×10 y β Ru 9/2+ trace
Tc 142.6836(11) keV 6.0066(2) h IT Tc 1/2−
β (0.0037%) Ru
Tc 43 57 99.9076527(15) 15.46(19) s β Ru 1+
EC (0.0018%) Mo
Tc 200.67(4) keV 8.32(14) μs IT Tc (4)+
Tc 243.95(4) keV 3.2(2) μs IT Tc (6)+
Tc 43 58 100.907305(26) 14.22(1) min β Ru 9/2+
Tc 207.526(20) keV 636(8) μs IT Tc 1/2−
Tc 43 59 101.9092072(98) 5.28(15) s β Ru 1+
Tc 50(50)# keV 4.35(7) min β Ru (4+)
Tc 43 60 102.909174(11) 54.2(8) s β Ru 5/2+
Tc 43 61 103.911434(27) 18.3(3) min β Ru (3−)
Tc 69.7(2) keV 3.5(3) μs IT Tc (5−)
Tc 106.1(3) keV 400(20) ns IT Tc 4#
Tc 43 62 104.911662(38) 7.64(6) min β Ru (3/2−)
Tc 43 63 105.914357(13) 35.6(6) s β Ru (1,2)(+#)
Tc 43 64 106.9154584(93) 21.2(2) s β Ru (3/2−)
Tc 30.1(1) keV 3.85(5) μs IT Tc (1/2+)
Tc 65.72(14) keV 184(3) ns IT Tc (5/2+)
Tc 43 65 107.9184935(94) 5.17(7) s β Ru (2)+
Tc 43 66 108.920254(10) 905(21) ms β (99.92%) Ru (5/2+)
β, n (0.08%) Ru
Tc 43 67 109.923741(10) 900(13) ms β (99.96%) Ru (2+,3+)
β, n (0.04%) Ru
Tc 43 68 110.925899(11) 350(11) ms β (99.15%) Ru 5/2+#
β, n (0.85%) Ru
Tc 43 69 111.9299417(59) 323(6) ms β (98.5%) Ru (2+)
β, n (1.5%) Ru
Tc 352.3(7) keV 150(17) ns IT Tc
Tc 43 70 112.9325690(36) 152(8) ms β (97.9%) Ru 5/2+#
β, n (2.1%) Ru
Tc 114.4(5) keV 527(16) ns IT Tc 5/2−#
Tc 43 71 113.93709(47) 121(9) ms β (98.7%) Ru 5+#
β, n (1.3%) Ru
Tc 160(430) keV 90(20) ms β (98.7%) Ru 1+#
β, n (1.3%) Ru
Tc 43 72 114.94010(21)# 78(2) ms β Ru 5/2+#
Tc 43 73 115.94502(32)# 57(3) ms β Ru 2+#
Tc 43 74 116.94832(43)# 44.5(30) ms β Ru 5/2+#
Tc 43 75 117.95353(43)# 30(4) ms β Ru 2+#
Tc 43 76 118.95688(54)# 22(3) ms β Ru 5/2+#
Tc 43 77 119.96243(54)# 21(5) ms β Ru 3+#
Tc 43 78 120.96614(54)# 22(6) ms β Ru 5/2+#
Tc 43 79 121.97176(32)# 13# ms
1+#
This table header & footer:
  1. Tc – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Long-lived fission product
  10. Used in medicine
  11. ^ Order of ground state and isomer is uncertain.

Stability of technetium isotopes

See also: Beta-decay stable isobars

Technetium and promethium are unusual light elements in that they have no stable isotopes. Using the liquid drop model for atomic nuclei, one can derive a semiempirical formula for the binding energy of a nucleus. This formula predicts a "valley of beta stability" along which nuclides do not undergo beta decay. Nuclides that lie "up the walls" of the valley tend to decay by beta decay towards the center (by emitting an electron, emitting a positron, or capturing an electron). For a fixed number of nucleons A, the binding energies lie on one or more parabolas, with the most stable nuclide at the bottom. One can have more than one parabola because isotopes with an even number of protons and an even number of neutrons are more stable than isotopes with an odd number of neutrons and an odd number of protons. A single beta decay then transforms one into the other. When there is only one parabola, there can be only one stable isotope lying on that parabola. When there are two parabolas, that is, when the number of nucleons is even, it can happen (rarely) that there is a stable nucleus with an odd number of neutrons and an odd number of protons (although this happens only in five instances: H, Li, B, N and Ta). However, if this happens, there can be no stable isotope with an even number of neutrons and an even number of protons.

For technetium (Z = 43), the valley of beta stability is centered at around 98 nucleons. However, for every number of nucleons from 94 to 102, there is already at least one stable nuclide of either molybdenum (Z = 42) or ruthenium (Z = 44), and the Mattauch isobar rule states that two adjacent isobars cannot both be stable. For the isotopes with odd numbers of nucleons, this immediately rules out a stable isotope of technetium, since there can be only one stable nuclide with a fixed odd number of nucleons. For the isotopes with an even number of nucleons, since technetium has an odd number of protons, any isotope must also have an odd number of neutrons. In such a case, the presence of a stable nuclide having the same number of nucleons and an even number of protons rules out the possibility of a stable nucleus.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Atomic weights of the elements 2011 (IUPAC Technical Report)" (PDF). IUPAC. p. 1059(13). Retrieved August 11, 2014. – Elements marked with a * have no stable isotope: 43, 61, and 83 and up.
  3. Icenhower, J.P.; Martin, W.J.; Qafoku, N.P.; Zachara, J.M. (2008). The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment (Report). Pacific Northwest National Laboratory: U.S. Department of Energy. p. 2.1.
  4. ^ "Livechart - Table of Nuclides - Nuclear structure and decay data". www-nds.iaea.org. Retrieved 2017-11-18.
  5. "Nubase 2016". NDS IAEA. 2017. Retrieved 18 November 2017.
  6. National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
  7. ^ "Technetium". EnvironmentalChemistry.com.
  8. Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
  9. Bigott, H. M.; Mccarthy, D. W.; Wüst, F. R.; Dahlheimer, J. L.; Piwnica-Worms, D. R.; Welch, M. J. (2001). "Production, processing and uses of 94mTc". Journal of Labelled Compounds and Radiopharmaceuticals. 44 (S1): S119 – S121. doi:10.1002/jlcr.2580440141. ISSN 1099-1344.
  10. Morley, Thomas; Benard, Francois; Schaffer, Paul; Buckley, Kenneth; Hoehr, Cornelia; Gagnon, Katherine; McQuarrie, Steve; Kovacs, Michael; Ruth, Thomas (2011-05-01). "Simple, rapid production of Tc-94m". Journal of Nuclear Medicine. 52 (supplement 1): 290. ISSN 0161-5505.
  11. Hayakawa, Takehito; Hatsukawa, Yuichi; Tanimori, Toru (January 2018). "95g Tc and 96g Tc as alternatives to medical radioisotope 99m Tc". Heliyon. 4 (1): e00497. Bibcode:2018Heliy...400497H. doi:10.1016/j.heliyon.2017.e00497. ISSN 2405-8440. PMC 5766687. PMID 29349358.
  12. Mausolf, Edward J.; Johnstone, Erik V.; Mayordomo, Natalia; Williams, David L.; Guan, Eugene Yao Z.; Gary, Charles K. (September 2021). "Fusion-Based Neutron Generator Production of Tc-99m and Tc-101: A Prospective Avenue to Technetium Theranostics". Pharmaceuticals. 14 (9): 875. doi:10.3390/ph14090875. PMC 8467155. PMID 34577575.
  13. The Encyclopedia of the Chemical Elements, p. 693, "Toxicology", paragraph 2
  14. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  15. ^ Johnstone, E.V.; Yates, M.A.; Poineau, F.; Sattelberger, A.P.; Czerwinski, K.R. (2017). "Technetium, the first radioelement on the periodic table". Journal of Chemical Education. 94 (3): 320–326. Bibcode:2017JChEd..94..320J. doi:10.1021/acs.jchemed.6b00343. OSTI 1368098.
  16. Radiochemistry and Nuclear Chemistry
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: