Misplaced Pages

Thioxanthene

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Thioxanthenes)
Thioxanthene
Names
Preferred IUPAC name 9H-Thioxanthene
Other names 10H-Dibenzothiin
Identifiers
CAS Number
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.005.430 Edit this at Wikidata
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C13H10S/c1-3-7-12-10(5-1)9-11-6-2-4-8-13(11)14-12/h1-8H,9H2Key: PQJUJGAVDBINPI-UHFFFAOYSA-N
  • InChI=1/C13H10S/c1-3-7-12-10(5-1)9-11-6-2-4-8-13(11)14-12/h1-8H,9H2Key: PQJUJGAVDBINPI-UHFFFAOYAP
SMILES
  • S2c1ccccc1Cc3c2cccc3
Properties
Chemical formula C13H10S
Molar mass 198.28 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Thioxanthene is a chemical compound in which the oxygen atom in xanthene is replaced with a sulfur atom. It is also related to phenothiazine. Several of its derivatives are used as typical antipsychotics in the treatment of schizophrenia and other psychoses.

Derivatives

The derivatives of thioxanthene used clinically as antipsychotics include:

The therapeutic efficacy of these drugs is related to their ability to antagonize the D2 receptors in the brain, though they have actions at other sites such as serotonin, adrenaline, and histamine receptors as well which mostly contribute to side effects.

The thioxanthenes, as a class, are closely related chemically to the phenothiazines. The major structural difference is that the nitrogen at position 10 in the phenothiazines is replaced by a carbon atom with a double bond to the side chain. This difference is noted in the illustration of flupenthixol, which shows a double-bonded carbon in the number 10 position (opposite the sulfur molecule in the central chain).

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 213. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
  2. Goodman & Gilman's The Pharmacological Basis of Therapeutics

External links

Antipsychotics (N05A)
Typical
Disputed
Atypical
Others
Antiemetics (A04)
5-HT3 serotonin ion
channel antagonists
5-HT serotonin G-protein
receptor antagonists
CB1 agonists
(cannabinoids)
D2/D3 antagonists
H1 antagonists
(antihistamines)
mACh antagonists
(anticholinergics)
NK1 antagonists
Others
Hypnotics/sedatives (N05C)
GABAA
Alcohols
Barbiturates
Benzodiazepines
Carbamates
Imidazoles
Monoureides
Neuroactive steroids
Nonbenzodiazepines
Phenols
Piperidinediones
Quinazolinones
Others
GABAB
H1
Antihistamines
Antidepressants
Antipsychotics
α2-Adrenergic
5-HT2A
Antidepressants
Antipsychotics
Others
Melatonin
Orexin
α2δ VDCC
Others
Adrenergic receptor modulators
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Dopamine receptor modulators
D1-like
Agonists
PAMs
Antagonists
D2-like
Agonists
Antagonists
Histamine receptor modulators
H1
Agonists
Antagonists
H2
Agonists
Antagonists
H3
Agonists
Antagonists
H4
Agonists
Antagonists
See also
Receptor/signaling modulators
Monoamine metabolism modulators
Monoamine reuptake inhibitors
Serotonin receptor modulators
5-HT1
5-HT1A
5-HT1B
5-HT1D
5-HT1E
5-HT1F
5-HT2
5-HT2A
5-HT2B
5-HT2C
5-HT37
5-HT3
5-HT4
5-HT5A
5-HT6
5-HT7
Tricyclics
Classes
Antidepressants
(Tricyclic antidepressants (TCAs))
Antihistamines
Antipsychotics
Anticonvulsants
Anticholinergics
Others
Category: