Misplaced Pages

Diphosgene

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Trichloromethyl chloroformate)
Diphosgene
Diphosgene
Diphosgene
Names
Preferred IUPAC name Trichloromethyl carbonochloridate
Other names Trichloromethyl chloroformate, surpalite
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.242 Edit this at Wikidata
EC Number
  • 207-965-9
PubChem CID
RTECS number
  • LQ7350000
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C2Cl4O2/c3-1(7)8-2(4,5)6Key: HCUYBXPSSCRKRF-UHFFFAOYSA-N
  • InChI=1/C2Cl4O2/c3-1(7)8-2(4,5)6Key: HCUYBXPSSCRKRF-UHFFFAOYAO
SMILES
  • ClC(=O)OC(Cl)(Cl)Cl
Properties
Chemical formula C2Cl4O2
Molar mass 197.82 g/mol
Appearance liquid at room temperature
Density 1.65 g/cm
Melting point −57 °C (−71 °F; 216 K)
Boiling point 128 °C (262 °F; 401 K)
Solubility in water insoluble, reacts
Hazards
Occupational safety and health (OHS/OSH):
Main hazards highly toxic, maybe corrosive; asphyxiant
GHS labelling:
Pictograms GHS05: CorrosiveGHS06: Toxic
Signal word Danger
Hazard statements H300, H301, H314, H330
Precautionary statements P260, P264, P270, P271, P280, P284, P301+P310, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P320, P321, P330, P363, P403+P233, P405, P501
Flash point 32 °C (90 °F; 305 K)
Related compounds
Related compounds COCl2, Cl2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound

Diphosgene is an organic chemical compound with the formula ClCO2CCl3. This colorless liquid is a valuable reagent in the synthesis of organic compounds. Diphosgene is related to phosgene and has comparable toxicity, but is more conveniently handled because it is a liquid, whereas phosgene is a gas.

Production and uses

Diphosgene is prepared by radical chlorination of methyl chloroformate under UV light:

Cl-CO-OCH3 + 3 Cl2 —(hv)→ Cl-CO-OCCl3 + 3 HCl

Another method is the radical chlorination of methyl formate:

H-CO-OCH3 + 4 Cl2 —(hv)→ Cl-CO-OCCl3 + 4 HCl

Diphosgene converts to phosgene upon heating or upon catalysis with charcoal. It is thus useful for reactions traditionally relying on phosgene. For example, it convert amines into isocyanates, secondary amines into carbamoyl chlorides, carboxylic acids into acid chlorides, and formamides into isocyanides. Diphosgene serves as a source of two equivalents of phosgene:

2 RNH2 + ClCO2CCl3 → 2 RNCO + 4 HCl

With α-amino acids diphosgene gives the acid chloride-isocyanates, OCNCHRCOCl, or N-carboxy-amino acid anhydrides depending on the conditions.

It hydrolyzes to release HCl in humid air.

Diphosgene is used in some laboratory preparations because it is easier to handle than phosgene.

Role in warfare

Diphosgene was originally developed as a pulmonary agent for chemical warfare, a few months after the first use of phosgene. It was used as a poison gas in artillery shells by Germany during World War I. The first recorded battlefield use was in May 1916. Diphosgene was developed because the vapors could destroy the filters of the gas masks in use at the time.

Safety

Diphosgene has a relatively high vapor pressure of 10 mm Hg (1.3 kPa) at 20 °C and decomposes to phosgene around 300 °C. Exposure to diphosgene is similar in hazard to phosgene.

See also

References

  1. Keisuke Kurita and Yoshio Iwakura (1979). "Trichloromethyl Chloroformate as a Phosgene Equivalent: 3-Isocyanatopropanoyl Chloride". Organic Syntheses. 59: 195; Collected Volumes, vol. 6, p. 715.
  2. Lohs, K. H.: Synthetische Gifte; Berlin (east), 1974 (German).
  3. Encyclopedia of Reagents for Organic Synthesis, 2001, doi:10.1002/047084289X, hdl:10261/236866, ISBN 978-0-471-93623-7
  4. Jones, Simon; Hook, Richard (2007). World War I Gas Warfare Tactics and Equipment. Osprey Publishing. ISBN 978-1-84603-151-9.

External links

Blood agents
Blister agents
Arsenicals
  • Ethyldichloroarsine (ED)
  • Methyldichloroarsine (MD)
  • Phenyldichloroarsine (PD)
  • Lewisite (L)
  • Lewisite 2 (L2)
  • Lewisite 3 (L3)
  • Sulfur mustards
    Nitrogen mustards
    Nettle agents
    Other
    Nerve agents
    G-agents
    V-agents
    GV agents
    Novichok agents
    Carbamates
    Other
    Precursors
    Neurotoxins
    Pulmonary/
    choking agents
    Vomiting agents
    Incapacitating
    agents
    Lachrymatory
    agents
    Malodorant agents
    Cornea-clouding agents
    Biological toxins
    Other
    Categories: