Misplaced Pages

Isotopes of nihonium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ununtrium-285) Nuclides with atomic number of 113 but with different mass numbers
Isotopes of nihonium (113Nh)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Nh synth 2.0 ms α Rg
Nh synth 61 ms α Rg
Nh synth 123 ms α Rg
Nh synth 0.90 s α Rg
ε Cn
Nh synth 2.1 s α Rg
SF
Nh synth 9.5 s α Rg
Nh synth 5.5 s? α Rg
Nh synth 2 s? α Rg

Nihonium (113Nh) is a synthetic element. Being synthetic, a standard atomic weight cannot be given and like all artificial elements, it has no stable isotopes. The first isotope to be synthesized was Nh as a decay product of Mc in 2003. The first isotope to be directly synthesized was Nh in 2004. There are 6 known radioisotopes from Nh to Nh, along with the unconfirmed Nh and Nh. The longest-lived isotope is Nh with a half-life of 9.5 seconds.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Nh 113 165 278.17073(24)# 2.0+2.7
−0.7 ms
α Rg
Nh 113 169 282.17577(43)# 61+73
−22 ms
α Rg
Nh 113 170 283.17667(47)# 123+80
−35 ms
α Rg
Nh 113 171 284.17884(57)# 0.90+0.07
−0.06 s
α (≥99%) Rg  
EC (≤1%) Cn
Nh 113 172 285.18011(83)# 2.1+0.6
−0.3 s
α (82%) Rg
SF (18%) (various)
Nh 113 173 286.18246(63)# 12(5) s α Rg
Nh 113 174 287.18406(76)# 5.5 s α Rg
Nh 113 177 290.19143(50)# 2.0+9.6
−0.9 s
α Rg
SF (<50%) (various)
This table header & footer:
  1. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  3. Modes of decay:
    EC: Electron capture
  4. Not directly synthesized, occurs as decay product of Mc
  5. Not directly synthesized, occurs as decay product of Mc
  6. Not directly synthesized, occurs in decay chain of Ts
  7. Not directly synthesized, occurs in decay chain of Ts
  8. Not directly synthesized, occurs in decay chain of Fl; unconfirmed
  9. Not directly synthesized, occurs in decay chain of Fl and Lv; unconfirmed

Isotopes and nuclear properties

Nucleosynthesis

Super-heavy elements such as nihonium are produced by bombarding lighter elements in particle accelerators that induce fusion reactions. Whereas most of the isotopes of nihonium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.

Depending on the energies involved, the former are separated into "hot" and "cold". In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets (actinides), giving rise to compound nuclei at high excitation energy (~40–50 MeV) that may either fission or evaporate several (3 to 5) neutrons. In cold fusion reactions, the produced fused nuclei have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the ground state, they require emission of only one or two neutrons, and thus, allows for the generation of more neutron-rich products. The latter is a distinct concept from that of where nuclear fusion claimed to be achieved at room temperature conditions (see cold fusion).

Cold fusion

Before the synthesis of nihonium by the RIKEN team, scientists at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung) in Darmstadt, Germany also tried to synthesize nihonium by bombarding bismuth-209 with zinc-70 in 1998. No nihonium atoms were identified in two separate runs of the reaction. They repeated the experiment in 2003 again without success. In late 2003, the emerging team at RIKEN using their efficient apparatus GARIS attempted the reaction and reached a limit of 140 fb. In December 2003 – August 2004, they resorted to "brute force" and carried out the reaction for a period of eight months. They were able to detect a single atom of Nh. They repeated the reaction in several runs in 2005 and were able to synthesize a second atom, followed by a third in 2012.

The table below contains various combinations of targets and projectiles which could be used to form compound nuclei with Z=113.

Target Projectile CN Attempt result
Pb Ga Nh Reaction yet to be attempted
Bi Zn Nh Successful reaction
U Sc Nh Reaction yet to be attempted
Np Ca Nh Successful reaction
Pu K Nh Reaction yet to be attempted
Cm Cl Nh Reaction yet to be attempted
Cm Cl Nh Reaction yet to be attempted

Hot fusion

In June 2006, the Dubna-Livermore team synthesised nihonium directly by bombarding a neptunium-237 target with accelerated calcium-48 nuclei, in a search for the lighter isotopes Nh and Nh and their decay products, to provide insight into the stabilizing effects of the closed neutron shells at N = 162 and N = 184:


93Np
+
20Ca

113Nh
+ 3
0n

Two atoms of Nh were detected.

As decay product

List of nihonium isotopes observed by decay
Evaporation residue Observed nihonium isotope
Lv, Fl ? Nh ?
Fl ? Nh ?
Ts, Mc Nh
Ts, Mc Nh
Mc Nh
Mc Nh
Mc Nh

Nihonium has been observed as a decay product of moscovium (via alpha decay). Moscovium currently has five known isotopes; all of them undergo alpha decays to become nihonium nuclei, with mass numbers between 282 and 286. Parent moscovium nuclei can be themselves decay products of tennessine. It may also occur as a decay product of flerovium (via electron capture), and parent flerovium nuclei can be themselves decay products of livermorium. For example, in January 2010, the Dubna team (JINR) identified nihonium-286 as a product in the decay of tennessine via an alpha decay sequence:


117Ts

115Mc
+
2He

115Mc

113Nh
+
2He

Theoretical calculations

Evaporation residue cross sections

The below table contains various targets-projectile combinations for which calculations have provided estimates for cross section yields from various neutron evaporation channels. The channel with the highest expected yield is given.

DNS = Di-nuclear system; σ = cross section

Target Projectile CN Channel (product) σmax Model Ref
Bi Zn Nh 1n (Nh) 30 fb DNS
U Sc Nh 3n (Nh) 20 fb DNS
Np Ca Nh 3n (Nh) 0.4 pb DNS
Pu K Nh 3n (Nh) 42.2 fb DNS
Cm Cl Nh 4n (Nh) 0.594 pb DNS
Cm Cl Nh 3n (Nh) 0.26 pb DNS

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.). Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei. Exotic Nuclei. pp. 155–164. ISBN 9789813226555.
  3. ^ Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A. 2016 (52). doi:10.1140/epja/i2016-16180-4.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ Oganessian, Yu. Ts.; Utyonkov, V. K.; Kovrizhnykh, N. D.; et al. (2022). "New isotope Mc produced in the Am+Ca reaction". Physical Review C. 106 (64306): 064306. Bibcode:2022PhRvC.106f4306O. doi:10.1103/PhysRevC.106.064306. S2CID 254435744.
  6. ^ Armbruster, Peter & Münzenberg, Gottfried (1989). "Creating superheavy elements". Scientific American. 34: 36–42.
  7. Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich (2009). "Discovery of the element with atomic number 112 (IUPAC Technical Report)". Pure and Applied Chemistry. 81 (7): 1331. doi:10.1351/PAC-REP-08-03-05.
  8. Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 261 (2): 301–308. doi:10.1016/0022-0728(89)80006-3.
  9. ^ "Search for element 113" Archived 2012-02-19 at the Wayback Machine, Hofmann et al., GSI report 2003. Retrieved on 3 March 2008
  10. Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction Bi(Zn, n)113". Journal of the Physical Society of Japan. 73 (10): 2593–2596. Bibcode:2004JPSJ...73.2593M. doi:10.1143/JPSJ.73.2593.
  11. Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011). "Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)". Pure and Applied Chemistry. 83 (7): 1485. doi:10.1351/PAC-REP-10-05-01.
  12. K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope, 113, of the 113th Element". Journal of the Physical Society of Japan. 81 (10): 103201. arXiv:1209.6431. Bibcode:2012JPSJ...81j3201M. doi:10.1143/JPSJ.81.103201. S2CID 119217928.
  13. ^ Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; Abdullin, F.; Polyakov, A.; Sagaidak, R.; Shirokovsky, I.; Tsyganov, Yu.; Voinov, A.; Gulbekian, Gulbekian; et al. (2007). "Synthesis of the isotope 113 in the Np+Ca fusion reaction" (PDF). Physical Review C. 76 (1): 011601(R). Bibcode:2007PhRvC..76a1601O. doi:10.1103/PhysRevC.76.011601.
  14. ^ Oganessian, Yu. Ts.; Abdullin, F. Sh.; Bailey, P. D.; Benker, D. E.; Bennett, M. E.; Dmitriev, S. N.; Ezold, J. G.; Hamilton, J. H.; et al. (2010). "Synthesis of a New Element with Atomic Number Z=117". Physical Review Letters. 104 (14): 142502. Bibcode:2010PhRvL.104n2502O. doi:10.1103/PhysRevLett.104.142502. PMID 20481935.
  15. ^ Oganessian, Yu. Ts.; Penionzhkevich, Yu. E.; Cherepanov, E. A. (2007). "Heaviest Nuclei Produced in Ca-induced Reactions (Synthesis and Decay Properties)". AIP Conference Proceedings. Vol. 912. pp. 235–246. doi:10.1063/1.2746600.
  16. Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Archived from the original on 2007-08-07. Retrieved 2008-06-06.
  17. Feng, Zhao-Qing; Jin, Gen-Ming; Li, Jun-Qing; Scheid, Werner (2007). "Formation of superheavy nuclei in cold fusion reactions". Physical Review C. 76 (4): 044606. arXiv:0707.2588. Bibcode:2007PhRvC..76d4606F. doi:10.1103/PhysRevC.76.044606. S2CID 711489.
  18. ^ Feng, Z.; Jin, G.; Li, J. (2009). "Production of new superheavy Z=108-114 nuclei with U, Pu and Cm targets". Physical Review C. 80 (5): 057601. arXiv:0912.4069. doi:10.1103/PhysRevC.80.057601. S2CID 118733755.
  19. Feng, Z; Jin, G; Li, J; Scheid, W (2009). "Production of heavy and superheavy nuclei in massive fusion reactions". Nuclear Physics A. 816 (1–4): 33–51. arXiv:0803.1117. Bibcode:2009NuPhA.816...33F. doi:10.1016/j.nuclphysa.2008.11.003. S2CID 18647291.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: