Misplaced Pages

Isotopes of uranium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Uranium-240)

Isotopes of uranium (92U)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
U synth 68.9 y α Th
SF
U trace 1.592×10 y α Th
SF
U 0.005% 2.455×10 y α Th
SF
U 0.720% 7.038×10 y α Th
SF
U trace 2.342×10 y α Th
SF
U 99.3% 4.468×10 y α Th
SF
ββ Pu
Standard atomic weight Ar°(U)
  • 238.02891±0.00003
  • 238.03±0.01 (abridged)

Uranium (92U) is a naturally occurring radioactive element (radioelement) with no stable isotopes. It has two primordial isotopes, uranium-238 and uranium-235, that have long half-lives and are found in appreciable quantity in Earth's crust. The decay product uranium-234 is also found. Other isotopes such as uranium-233 have been produced in breeder reactors. In addition to isotopes found in nature or nuclear reactors, many isotopes with far shorter half-lives have been produced, ranging from U to U (except for U). The standard atomic weight of natural uranium is 238.02891(3).

Natural uranium consists of three main isotopes, U (99.2739–99.2752% natural abundance), U (0.7198–0.7202%), and U (0.0050–0.0059%). All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.4683×10 years (about the age of the Earth).

Uranium-238 is an alpha emitter, decaying through the 18-member uranium series into lead-206. The decay series of uranium-235 (historically called actino-uranium) has 15 members and ends in lead-207. The constant rates of decay in these series makes comparison of the ratios of parent-to-daughter elements useful in radiometric dating. Uranium-233 is made from thorium-232 by neutron bombardment.

Uranium-235 is important for both nuclear reactors (energy production) and nuclear weapons because it is the only isotope existing in nature to any appreciable extent that is fissile in response to thermal neutrons, i.e., thermal neutron capture has a high probability of inducing fission. A chain reaction can be sustained with a large enough (critical) mass of uranium-235. Uranium-238 is also important because it is fertile: it absorbs neutrons to produce a radioactive isotope that decays into plutonium-239, which also is fissile.

List of isotopes


Nuclide
Historic
name
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
U 92 122 0.52+0.95
−0.21 ms
α Th 0+
U 92 123 215.026720(11) 1.4(0.9) ms α Th 5/2−#
β? Pa
U 92 124 216.024760(30) 2.25+0.63
−0.40 ms
α Th 0+
U 2206 keV 0.89+0.24
−0.16 ms
α Th 8+
U 92 125 217.024660(86)# 19.3+13.3
−5.6 ms
α Th (1/2−)
β? Pa
U 92 126 218.023505(15) 650+80
−70 μs
α Th 0+
U 2117 keV 390+60
−50 μs
α Th 8+
IT? U
U 92 127 219.025009(14) 60(7) μs α Th (9/2+)
β? Pa
U 92 129 221.026323(77) 0.66(14) μs α Th (9/2+)
β? Pa
U 92 130 222.026058(56) 4.7(0.7) μs α Th 0+
β? Pa
U 92 131 223.027961(63) 65(12) μs α Th 7/2+#
β? Pa
U 92 132 224.027636(16) 396(17) μs α Th 0+
β? Pa
U 92 133 225.029385(11) 62(4) ms α Th 5/2+#
U 92 134 226.029339(12) 269(6) ms α Th 0+
U 92 135 227.0311811(91) 1.1(0.1) min α Th (3/2+)
β? Pa
U 92 136 228.031369(14) 9.1(0.2) min α (97.5%) Th 0+
EC (2.5%) Pa
U 92 137 229.0335060(64) 57.8(0.5) min β (80%) Pa (3/2+)
α (20%) Th
U 92 138 230.0339401(48) 20.23(0.02) d α Th 0+
SF ? (various)
CD (4.8×10%) Pb
Ne
U 92 139 231.0362922(29) 4.2(0.1) d EC Pa 5/2+#
α (.004%) Th
U 92 140 232.0371548(19) 68.9(0.4) y α Th 0+
CD (8.9×10%) Pb
Ne
SF (10%) (various)
CD? Hg
Mg
U 92 141 233.0396343(24) 1.592(2)×10 y α Th 5/2+ Trace
CD (≤7.2×10%) Pb
Ne
SF ? (various)
CD ? Hg
Mg
U Uranium II 92 142 234.0409503(12) 2.455(6)×10 y α Th 0+ 0.000050–
0.000059
SF (1.64×10%) (various)
CD (1.4×10%) Hg
Mg
CD (≤9×10%) Pb
Ne
CD (≤9×10%) Pb
Ne
U 1421.257(17) keV 33.5(2.0) ms IT U 6−
U Actin Uranium
Actino-Uranium
92 143 235.0439281(12) 7.038(1)×10 y α Th 7/2− 0.007198–
0.007207
SF (7×10%) (various)
CD (8×10%) Pb
Ne
CD (8×10%) Pb
Ne
CD (8×10%) Hg
Mg
U 0.076737(18) keV 25.7(1) min IT U 1/2+
U 2500(300) keV 3.6(18) ms SF (various)
U Thoruranium 92 144 236.0455661(12) 2.342(3)×10 y α Th 0+ Trace
SF (9.6×10%) (various)
CD (≤2.0×10%) Hg
Mg
CD (≤2.0×10%) Hg
Mg
U 1052.5(6) keV 100(4) ns IT U 4−
U 2750(3) keV 120(2) ns IT (87%) U (0+)
SF (13%) (various)
U 92 145 237.0487283(13) 6.752(2) d β Np 1/2+ Trace
U 274.0(10) keV 155(6) ns IT U 7/2−
U Uranium I 92 146 238.050787618(15) 4.468(3)×10 y α Th 0+ 0.992739–
0.992752
SF (5.44×10%) (various)
ββ (2.2×10%) Pu
U 2557.9(5) keV 280(6) ns IT (97.4%) U 0+
SF (2.6%) (various)
U 92 147 239.0542920(16) 23.45(0.02) min β Np 5/2+ Trace
U 133.7991(10) keV 780(40) ns IT U 1/2+
U 2500(900)# keV >250 ns SF? (various) 0+
IT? U
U 92 148 240.0565924(27) 14.1(0.1) h β Np 0+ Trace
α? Th
U 92 149 241.06031(5) ~40 min β Np 7/2+#
U 92 150 242.06296(10) 16.8(0.5) min β Np 0+
This table header & footer:
  1. U – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    CD: Cluster decay
    EC: Electron capture
    SF: Spontaneous fission
  5. Bold italics symbol as daughter – Daughter product is nearly stable.
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. Intermediate decay product of Np
  10. Used in uranium–thorium dating
  11. ^ Used in uranium–uranium dating
  12. Intermediate decay product of U
  13. ^ Primordial radionuclide
  14. ^ Used in Uranium–lead dating
  15. Important in nuclear reactors
  16. Intermediate decay product of Pu, also produced by neutron capture of U
  17. Neutron capture product, parent of trace quantities of Np
  18. Neutron capture product; parent of trace quantities of Pu
  19. Intermediate decay product of Pu

Actinides vs fission products

Actinides and fission products by half-life
Actinides by decay chain Half-life
range (a)
Fission products of U by yield
4n 4n + 1 4n + 2 4n + 3 4.5–7% 0.04–1.25% <0.001%
Ra 4–6 a Eu
Bk > 9 a
Cm Pu Cf Ac 10–29 a Sr Kr Cd
U Pu Cm 29–97 a Cs Sm Sn
Cf Am 141–351 a

No fission products have a half-life
in the range of 100 a–210 ka ...

Am Cf 430–900 a
Ra Bk 1.3–1.6 ka
Pu Th Cm Am 4.7–7.4 ka
Cm Cm 8.3–8.5 ka
Pu 24.1 ka
Th Pa 32–76 ka
Np U U 150–250 ka Tc Sn
Cm Pu 327–375 ka Se
1.33 Ma Cs
Np 1.61–6.5 Ma Zr Pd
U Cm 15–24 Ma I
Pu 80 Ma

... nor beyond 15.7 Ma

Th U U 0.7–14.1 Ga

Uranium-214

Uranium-214 is the lightest known isotope of uranium. It was discovered at the Spectrometer for Heavy Atoms and Nuclear Structure (SHANS) at the Heavy Ion Research Facility in Lanzhou, China in 2021, produced by firing argon-36 at tungsten-182. It alpha-decays with a half-life of 0.5 ms.

Uranium-232

Main article: Uranium-232

Uranium-232 has a half-life of 68.9 years and is a side product in the thorium cycle. It has been cited as an obstacle to nuclear proliferation using U, because the intense gamma radiation from Tl (a daughter of U, produced relatively quickly) makes U contaminated with it more difficult to handle. Uranium-232 is a rare example of an even-even isotope that is fissile with both thermal and fast neutrons.

Uranium-233

Main article: Uranium-233

Uranium-233 is a fissile isotope that is bred from thorium-232 as part of the thorium fuel cycle. U was investigated for use in nuclear weapons and as a reactor fuel. It was occasionally tested but never deployed in nuclear weapons and has not been used commercially as a nuclear fuel. It has been used successfully in experimental nuclear reactors and has been proposed for much wider use as a nuclear fuel. It has a half-life of around 160,000 years.

Uranium-233 is produced by neutron irradiation of thorium-232. When thorium-232 absorbs a neutron, it becomes thorium-233, which has a half-life of only 22 minutes. Thorium-233 beta decays into protactinium-233. Protactinium-233 has a half-life of 27 days and beta decays into uranium-233; some proposed molten salt reactor designs attempt to physically isolate the protactinium from further neutron capture before beta decay can occur.

Uranium-233 usually fissions on neutron absorption but sometimes retains the neutron, becoming uranium-234. The capture-to-fission ratio is smaller than the other two major fissile fuels, uranium-235 and plutonium-239; it is also lower than that of short-lived plutonium-241, but bested by very difficult-to-produce neptunium-236.

Uranium-234

Main article: Uranium-234

U occurs in natural uranium as an indirect decay product of uranium-238, but makes up only 55 parts per million of the uranium because its half-life of 245,500 years is only about 1/18,000 that of U. The path of production of U is this: U alpha decays to thorium-234. Next, with a short half-life, Th beta decays to protactinium-234. Finally, Pa beta decays to U.

U alpha decays to thorium-230, except for a small percentage of nuclei that undergo spontaneous fission.

Extraction of small amounts of U from natural uranium could be done using isotope separation, similar to normal uranium-enrichment. However, there is no real demand in chemistry, physics, or engineering for isolating U. Very small pure samples of U can be extracted via the chemical ion-exchange process, from samples of plutonium-238 that have aged somewhat to allow some alpha decay to U.

Enriched uranium contains more U than natural uranium as a byproduct of the uranium enrichment process aimed at obtaining uranium-235, which concentrates lighter isotopes even more strongly than it does U. The increased percentage of U in enriched natural uranium is acceptable in current nuclear reactors, but (re-enriched) reprocessed uranium might contain even higher fractions of U, which is undesirable. This is because U is not fissile, and tends to absorb slow neutrons in a nuclear reactor—becoming U.

U has a neutron capture cross section of about 100 barns for thermal neutrons, and about 700 barns for its resonance integral—the average over neutrons having various intermediate energies. In a nuclear reactor, non-fissile isotopes capture a neutron breeding fissile isotopes. U is converted to U more easily and therefore at a greater rate than uranium-238 is to plutonium-239 (via neptunium-239), because U has a much smaller neutron-capture cross section of just 2.7 barns.

Uranium-235

Main article: Uranium-235

Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature.

Uranium-235 has a half-life of 703.8 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. The fission-to-capture ratio improves for faster neutrons.

Uranium-236

Main article: Uranium-236

Uranium-236 has a half-life of about 23 million years; and is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel.

Uranium-237

Uranium-237 has a half-life of about 6.75 days. It decays into neptunium-237 by beta decay. It was discovered by Japanese physicist Yoshio Nishina in 1940, who in a near-miss discovery, inferred the creation of element 93, but was unable to isolate the then-unknown element or measure its decay properties.

Uranium-238

Main article: Uranium-238

Uranium-238 (U or U-238) is the most common isotope of uranium in nature. It is not fissile, but is fertile: it can capture a slow neutron and after two beta decays become fissile plutonium-239. Uranium-238 is fissionable by fast neutrons, but cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

About 99.284% of natural uranium is uranium-238, which has a half-life of 1.41×10 seconds (4.468×10 years). Depleted uranium has an even higher concentration of U, and even low-enriched uranium (LEU) is still mostly U. Reprocessed uranium is also mainly U, with about as much uranium-235 as natural uranium, a comparable proportion of uranium-236, and much smaller amounts of other isotopes of uranium such as uranium-234, uranium-233, and uranium-232.

Uranium-239

Uranium-239 is usually produced by exposing U to neutron radiation in a nuclear reactor. U has a half-life of about 23.45 minutes and beta decays into neptunium-239, with a total decay energy of about 1.29 MeV. The most common gamma decay at 74.660 keV accounts for the difference in the two major channels of beta emission energy, at 1.28 and 1.21 MeV.

Np then, with a half-life of about 2.356 days, beta-decays to plutonium-239.

Uranium-241

In 2023, in a paper published in Physical Review Letters, a group of researchers based in Korea reported that they had found uranium-241 in an experiment involving U+Pt multinucleon transfer reactions. Its half-life is about 40 minutes.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Magurno, B.A.; Pearlstein, S, eds. (1981). Proceedings of the conference on nuclear data evaluation methods and procedures. BNL-NCS 51363, vol. II (PDF). Upton, NY (USA): Brookhaven National Lab. pp. 835 ff. Retrieved 2014-08-06.
  3. "Standard Atomic Weights: Uranium". CIAAW. 1999.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. "Uranium Isotopes". GlobalSecurity.org. Retrieved 14 March 2012.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. Zhang, Z. Y.; Yang, H. B.; Huang, M. H.; Gan, Z. G.; Yuan, C. X.; Qi, C.; Andreyev, A. N.; Liu, M. L.; Ma, L.; Zhang, M. M.; Tian, Y. L.; Wang, Y. S.; Wang, J. G.; Yang, C. L.; Li, G. S.; Qiang, Y. H.; Yang, W. Q.; Chen, R. F.; Zhang, H. B.; Lu, Z. W.; Xu, X. X.; Duan, L. M.; Yang, H. R.; Huang, W. X.; Liu, Z.; Zhou, X. H.; Zhang, Y. H.; Xu, H. S.; Wang, N.; Zhou, H. B.; Wen, X. J.; Huang, S.; Hua, W.; Zhu, L.; Wang, X.; Mao, Y. C.; He, X. T.; Wang, S. Y.; Xu, W. Z.; Li, H. W.; Ren, Z. Z.; Zhou, S. G. (2021). "New α-Emitting Isotope 214 and Abnormal Enhancement of α-Particle Clustering in Lightest Uranium Isotopes". Physical Review Letters. 126 (15): 152502. arXiv:2101.06023. Bibcode:2021PhRvL.126o2502Z. doi:10.1103/PhysRevLett.126.152502. PMID 33929212. S2CID 231627674.
  8. ^ Zhang, M. M.; Tian, Y. L.; Wang, Y. S.; Zhang, Z. Y.; Gan, Z. G.; Yang, H. B.; Huang, M. H.; Ma, L.; Yang, C. L.; Wang, J. G.; Yuan, C. X.; Qi, C.; Andreyev, A. N.; Huang, X. Y.; Xu, S. Y.; Zhao, Z.; Chen, L. X.; Wang, J. Y.; Liu, M. L.; Qiang, Y. H.; Li, G. S.; Yang, W. Q.; Chen, R. F.; Zhang, H. B.; Lu, Z. W.; Xu, X. X.; Duan, L. M.; Yang, H. R.; Huang, W. X.; Liu, Z.; Zhou, X. H.; Zhang, Y. H.; Xu, H. S.; Wang, N.; Zhou, H. B.; Wen, X. J.; Huang, S.; Hua, W.; Zhu, L.; Wang, X.; Mao, Y. C.; He, X. T.; Wang, S. Y.; Xu, W. Z.; Li, H. W.; Niu, Y. F.; Guo, L.; Ren, Z. Z.; Zhou, S. G. (4 August 2022). "Fine structure in the α decay of the 8+ isomer in U". Physical Review C. 106 (2): 024305. doi:10.1103/PhysRevC.106.024305. ISSN 2469-9985. S2CID 251359451.
  9. Gan, ZaiGuo; Jiang, Jian; Yang, HuaBin; Zhang, ZhiYuan; Ma, Long; Yu, Lin; Wang, JianGuo; Tian, YuLin; Ding, Bing; Huang, TianHeng; Wang, YongSheng; Guo, Song; Sun, MingDao; Wang, KaiLong; Zhou, ShanGui; Ren, ZhongZhou; Zhou, XiaoHong; Xu, HuShan (1 August 2016). "α decay studies of the neutron-deficient uranium isotopes 215-217U". Chinese Science Bulletin. 61 (22): 2502–2511. doi:10.1360/N972015-01316. Retrieved 24 June 2023.
  10. Trenn, Thaddeus J. (1978). "Thoruranium (U-236) as the extinct natural parent of thorium: The premature falsification of an essentially correct theory". Annals of Science. 35 (6): 581–97. doi:10.1080/00033797800200441.
  11. ^ Bonetti, R.; Guglielmetti, A. (2007). "Cluster radioactivity: an overview after twenty years" (PDF). Romanian Reports in Physics. 59: 301–310. Archived from the original (PDF) on 19 September 2016.
  12. Kromer, Kathrin; Lyu, Chunhai; Bieroń, Jacek; Door, Menno; Enzmann, Lucia; Filianin, Pavel; Gaigalas, Gediminas; Harman, Zoltán; Herkenhoff, Jost; Huang, Wenjia; Keitel, Christoph H.; Eliseev, Sergey; Blaum, Klaus (2024-02-06). "Atomic mass determination of uranium-238". Physical Review C. 109 (2). American Physical Society (APS). arXiv:2312.17041. doi:10.1103/physrevc.109.l021301. ISSN 2469-9985.
  13. ^ Niwase, T.; Watanabe, Y. X.; Hirayama, Y.; et al. (2023). "Discovery of New Isotope U and Systematic High-Precision Atomic Mass Measurements of Neutron-Rich Pa-Pu Nuclei Produced via Multinucleon Transfer Reactions" (PDF). Physical Review Letters. 130 (13): 132502-1–132502-6. doi:10.1103/PhysRevLett.130.132502. PMID 37067317. S2CID 257976576.
  14. Mukunth, Vasudevan (2023-04-05). "In pursuit of a 'magic number', physicists discover new uranium isotope". The Hindu. ISSN 0971-751X. Retrieved 2023-04-12.
  15. Yirka, Bob (April 5, 2023). "Previously unknown isotope of uranium discovered". Phys.org. Retrieved 2023-04-12.
  16. Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three-element gap of instability after polonium (84) where no nuclides have half-lives of at least four years (the longest-lived nuclide in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at 1,600 years, thus merits the element's inclusion here.
  17. Specifically from thermal neutron fission of uranium-235, e.g. in a typical nuclear reactor.
  18. Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics. 71 (2): 299. Bibcode:1965NucPh..71..299M. doi:10.1016/0029-5582(65)90719-4.
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk with a half-life greater than 9 . No growth of Cf was detected, and a lower limit for the β half-life can be set at about 10 . No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 ."
  19. This is the heaviest nuclide with a half-life of at least four years before the "sea of instability".
  20. Excluding those "classically stable" nuclides with half-lives significantly in excess of Th; e.g., while Cd has a half-life of only fourteen years, that of Cd is eight quadrillion years.
  21. "Physicists Discover New Uranium Isotope: Uranium-214". Sci-News.com. 14 May 2021. Retrieved 15 May 2021.
  22. Zhang, Z. Y.; et al. (2021). "New α -Emitting Isotope 214 U and Abnormal Enhancement of α -Particle Clustering in Lightest Uranium Isotopes". Physical Review Letters. 126 (15): 152502. arXiv:2101.06023. Bibcode:2021PhRvL.126o2502Z. doi:10.1103/PhysRevLett.126.152502. PMID 33929212. S2CID 231627674. Retrieved 15 May 2021.
  23. "Lightest-known form of uranium created". Live Science. 3 May 2021. Retrieved 15 May 2021.
  24. "Physicists have created a new and extremely rare kind of uranium". New Scientist. Retrieved 15 May 2021.
  25. "Uranium 232". Nuclear Power. Archived from the original on 26 February 2019. Retrieved 3 June 2019.
  26. "INCIDENT NEUTRON DATA". atom.kaeri.re.kr. 2011-12-14.
  27. C. W. Forsburg; L. C. Lewis (1999-09-24). "Uses For Uranium-233: What Should Be Kept for Future Needs?" (PDF). Ornl-6952. Oak Ridge National Laboratory.
  28. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  29. ^ Ronen, Y., ed. (1990). High converting water reactors. CRC Press. p. 212. ISBN 0-8493-6081-1. LCCN 89-25332.
  30. ^ Use of Reprocessed Uranium (PDF). Technical Document. Vienna: International Atomic Energy Agency. 2009. ISBN 978-92-0-157109-0. ISSN 1684-2073.
  31. B. C. Diven; J. Terrell; A. Hemmendinger (1 January 1958). "Capture-to-Fission Ratios for Fast Neutrons in U235". Physical Review Letters. 109 (1): 144–150. Bibcode:1958PhRv..109..144D. doi:10.1103/PhysRev.109.144.
  32. Ikeda, Nagao (July 25, 2011). "The discoveries of uranium 237 and symmetric fission — From the archival papers of Nishina and Kimura". Proceedings of the Japan Academy. Series B, Physical and Biological Sciences. 87 (7): 371–376. doi:10.2183/pjab.87.371. PMC 3171289. PMID 21785255.
  33. CRC Handbook of Chemistry and Physics, 57th Ed. p. B-345
  34. CRC Handbook of Chemistry and Physics, 57th Ed. p. B-423
  35. ^ Yirka, Bob; Phys.org. "Previously unknown isotope of uranium discovered". phys.org. Retrieved 2023-04-10.
  36. Niwase, T.; Watanabe, Y. X.; Hirayama, Y.; Mukai, M.; Schury, P.; Andreyev, A. N.; Hashimoto, T.; Iimura, S.; Ishiyama, H.; Ito, Y.; Jeong, S. C.; Kaji, D.; Kimura, S.; Miyatake, H.; Morimoto, K. (2023-03-31). "Discovery of New Isotope $^{241}\mathrm{U}$ and Systematic High-Precision Atomic Mass Measurements of Neutron-Rich Pa-Pu Nuclei Produced via Multinucleon Transfer Reactions". Physical Review Letters. 130 (13): 132502. doi:10.1103/PhysRevLett.130.132502. PMID 37067317. S2CID 257976576.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: