This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Min-max theorem" – news · newspapers · books · scholar · JSTOR (November 2011) (Learn how and when to remove this message) |
In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.
This article first discusses the finite-dimensional case and its applications before considering compact operators on infinite-dimensional Hilbert spaces. We will see that for compact operators, the proof of the main theorem uses essentially the same idea from the finite-dimensional argument.
In the case that the operator is non-Hermitian, the theorem provides an equivalent characterization of the associated singular values. The min-max theorem can be extended to self-adjoint operators that are bounded below.
Matrices
Let A be a n × n Hermitian matrix. As with many other variational results on eigenvalues, one considers the Rayleigh–Ritz quotient RA : C \ {0} → R defined by
where (⋅, ⋅) denotes the Euclidean inner product on C. Clearly, the Rayleigh quotient of an eigenvector is its associated eigenvalue. Equivalently, the Rayleigh–Ritz quotient can be replaced by
For Hermitian matrices A, the range of the continuous function RA(x), or f(x), is a compact interval of the real line. The maximum b and the minimum a are the largest and smallest eigenvalue of A, respectively. The min-max theorem is a refinement of this fact.
Min-max theorem
Let be Hermitian on an inner product space with dimension , with spectrum ordered in descending order .
Let be the corresponding unit-length orthogonal eigenvectors.
Reverse the spectrum ordering, so that .
(Poincaré’s inequality) — Let be a subspace of with dimension , then there exists unit vectors , such that
, and .
ProofPart 2 is a corollary, using .
is a dimensional subspace, so if we pick any list of vectors, their span must intersect on at least a single line.
Take unit . That’s what we need.
- , since .
- Since , we find .
min-max theorem —
ProofPart 2 is a corollary of part 1, by using .
By Poincare’s inequality, is an upper bound to the right side.
By setting , the upper bound is achieved.
Counterexample in the non-Hermitian case
Let N be the nilpotent matrix
Define the Rayleigh quotient exactly as above in the Hermitian case. Then it is easy to see that the only eigenvalue of N is zero, while the maximum value of the Rayleigh quotient is 1/2. That is, the maximum value of the Rayleigh quotient is larger than the maximum eigenvalue.
Applications
Min-max principle for singular values
The singular values {σk} of a square matrix M are the square roots of the eigenvalues of M*M (equivalently MM*). An immediate consequence of the first equality in the min-max theorem is:
Similarly,
Here denotes the k entry in the decreasing sequence of the singular values, so that .
Cauchy interlacing theorem
Main article: Poincaré separation theoremLet A be a symmetric n × n matrix. The m × m matrix B, where m ≤ n, is called a compression of A if there exists an orthogonal projection P onto a subspace of dimension m such that PAP* = B. The Cauchy interlacing theorem states:
- Theorem. If the eigenvalues of A are α1 ≤ ... ≤ αn, and those of B are β1 ≤ ... ≤ βj ≤ ... ≤ βm, then for all j ≤ m,
This can be proven using the min-max principle. Let βi have corresponding eigenvector bi and Sj be the j dimensional subspace Sj = span{b1, ..., bj}, then
According to first part of min-max, αj ≤ βj. On the other hand, if we define Sm−j+1 = span{bj, ..., bm}, then
where the last inequality is given by the second part of min-max.
When n − m = 1, we have αj ≤ βj ≤ αj+1, hence the name interlacing theorem.
Compact operators
Let A be a compact, Hermitian operator on a Hilbert space H. Recall that the spectrum of such an operator (the set of eigenvalues) is a set of real numbers whose only possible cluster point is zero. It is thus convenient to list the positive eigenvalues of A as
where entries are repeated with multiplicity, as in the matrix case. (To emphasize that the sequence is decreasing, we may write .) When H is infinite-dimensional, the above sequence of eigenvalues is necessarily infinite. We now apply the same reasoning as in the matrix case. Letting Sk ⊂ H be a k dimensional subspace, we can obtain the following theorem.
- Theorem (Min-Max). Let A be a compact, self-adjoint operator on a Hilbert space H, whose positive eigenvalues are listed in decreasing order ... ≤ λk ≤ ... ≤ λ1. Then:
A similar pair of equalities hold for negative eigenvalues.
ProofLet S' be the closure of the linear span . The subspace S' has codimension k − 1. By the same dimension count argument as in the matrix case, S' ∩ Sk has positive dimension. So there exists x ∈ S' ∩ Sk with . Since it is an element of S' , such an x necessarily satisfy
Therefore, for all Sk
But A is compact, therefore the function f(x) = (Ax, x) is weakly continuous. Furthermore, any bounded set in H is weakly compact. This lets us replace the infimum by minimum:
So
Because equality is achieved when ,
This is the first part of min-max theorem for compact self-adjoint operators.
Analogously, consider now a (k − 1)-dimensional subspace Sk−1, whose the orthogonal complement is denoted by Sk−1. If S' = span{u1...uk},
So
This implies
where the compactness of A was applied. Index the above by the collection of k-1-dimensional subspaces gives
Pick Sk−1 = span{u1, ..., uk−1} and we deduce
Self-adjoint operators
The min-max theorem also applies to (possibly unbounded) self-adjoint operators. Recall the essential spectrum is the spectrum without isolated eigenvalues of finite multiplicity. Sometimes we have some eigenvalues below the essential spectrum, and we would like to approximate the eigenvalues and eigenfunctions.
- Theorem (Min-Max). Let A be self-adjoint, and let be the eigenvalues of A below the essential spectrum. Then
.
If we only have N eigenvalues and hence run out of eigenvalues, then we let (the bottom of the essential spectrum) for n>N, and the above statement holds after replacing min-max with inf-sup.
- Theorem (Max-Min). Let A be self-adjoint, and let be the eigenvalues of A below the essential spectrum. Then
.
If we only have N eigenvalues and hence run out of eigenvalues, then we let (the bottom of the essential spectrum) for n > N, and the above statement holds after replacing max-min with sup-inf.
The proofs use the following results about self-adjoint operators:
- Theorem. Let A be self-adjoint. Then for if and only if .
- Theorem. If A is self-adjoint, then
and
.
See also
References
- ^ G. Teschl, Mathematical Methods in Quantum Mechanics (GSM 99) https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/schroe.pdf
- ^ Lieb; Loss (2001). Analysis. GSM. Vol. 14 (2nd ed.). Providence: American Mathematical Society. ISBN 0-8218-2783-9.
External links and citations to related work
- Fisk, Steve (2005). "A very short proof of Cauchy's interlace theorem for eigenvalues of Hermitian matrices". arXiv:math/0502408.
- Hwang, Suk-Geun (2004). "Cauchy's Interlace Theorem for Eigenvalues of Hermitian Matrices". The American Mathematical Monthly. 111 (2): 157–159. doi:10.2307/4145217. JSTOR 4145217.
- Kline, Jeffery (2020). "Bordered Hermitian matrices and sums of the Möbius function". Linear Algebra and Its Applications. 588: 224–237. doi:10.1016/j.laa.2019.12.004.
- Reed, Michael; Simon, Barry (1978). Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press. ISBN 978-0-08-057045-7.
Functional analysis (topics – glossary) | |||||
---|---|---|---|---|---|
Spaces |
| ||||
Theorems | |||||
Operators | |||||
Algebras | |||||
Open problems | |||||
Applications | |||||
Advanced topics | |||||
Analysis in topological vector spaces | |
---|---|
Basic concepts | |
Derivatives | |
Measurability | |
Integrals | |
Results | |
Related | |
Functional calculus | |
Applications |
Spectral theory and -algebras | |
---|---|
Basic concepts | |
Main results | |
Special Elements/Operators | |
Spectrum | |
Decomposition | |
Spectral Theorem | |
Special algebras | |
Finite-Dimensional | |
Generalizations | |
Miscellaneous | |
Examples | |
Applications |
|