Misplaced Pages

Isotopes of zinc

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Zinc-68)

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2011) (Learn how and when to remove this message)
Isotopes of zinc (30Zn)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Zn 49.2% stable
Zn synth 244 d β Cu
Zn 27.7% stable
Zn 4% stable
Zn 18.5% stable
Zn synth 56 min β Ga
Zn synth 13.8 h β Ga
Zn 0.6% stable
Zn synth 2.4 min β Ga
Zn synth 4 h β Ga
Zn synth 46.5 h β Ga
Standard atomic weight Ar°(Zn)

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes Zn, Zn, Zn, Zn, and Zn with Zn being the most abundant (48.6% natural abundance). Twenty-eight radioisotopes have been characterised with the most stable being Zn with a half-life of 244.26 days, and then Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.

Zinc has been proposed as a "salting" material for nuclear weapons. A jacket of isotopically enriched Zn, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope Zn with a half-life of 244 days and produce approximately 1.115 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several years. Such a weapon is not known to have ever been built, tested, or used.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Zn 30 24 53.99388(23)# 1.8(5) ms 2p Ni 0+
Zn 30 25 54.98468(43)# 19.8(13) ms β, p (91.0%) Ni 5/2−#
β (9.0%) Cu
Zn 30 26 55.97274(43)# 32.4(7) ms β, p (88.0%) Ni 0+
β (12.0%) Cu
Zn 30 27 56.96506(22)# 45.7(6) ms β, p (87%) Ni 7/2−#
β (13%) Cu
Zn 30 28 57.954590(54) 86.0(19) ms β (99.3%) Cu 0+
β, p (0.7%) Ni
Zn 30 29 58.94931189(81) 178.7(13) ms β (99.90%) Cu 3/2−
β, p (0.10%) Ni
Zn 30 30 59.94184132(59) 2.38(5) min β Cu 0+
Zn 30 31 60.939507(17) 89.1(2) s β Cu 3/2−
Zn 30 32 61.93433336(66) 9.193(15) h β Cu 0+
Zn 30 33 62.9332111(17) 38.47(5) min β Cu 3/2−
Zn 30 34 63.92914178(69) Observationally Stable 0+ 0.4917(75)
Zn 30 35 64.92924053(69) 243.94(4) d EC (98.579(7)%) Cu 5/2−
β (1.421(7)%)
Zn 53.928(10) keV 1.6(6) μs IT Zn 1/2−
Zn 30 36 65.92603364(80) Stable 0+ 0.2773(98)
Zn 30 37 66.92712742(81) Stable 5/2− 0.0404(16)
Zn 93.312(5) keV 9.15(7) μs IT Zn 1/2−
Zn 604.48(5) keV 333(14) ns IT Zn 9/2+
Zn 30 38 67.92484423(84) Stable 0+ 0.1845(63)
Zn 30 39 68.92655036(85) 56.4(9) min β Ga 1/2−
Zn 438.636(18) keV 13.747(11) h IT (99.97%) Zn 9/2+
β (0.033%) Ga
Zn 30 40 69.9253192(21) Observationally Stable 0+ 0.0061(10)
Zn 30 41 70.9277196(28) 2.40(5) min β Ga 1/2−
Zn 157.7(13) keV 4.148(12) h β Ga 9/2+
IT? Zn
Zn 30 42 71.9268428(23) 46.5(1) h β Ga 0+
Zn 30 43 72.9295826(20) 24.5(2) s β Ga 1/2−
Zn 195.5(2) keV 13.0(2) ms IT Zn 5/2+
Zn 30 44 73.9294073(27) 95.6(12) s β Ga 0+
Zn 30 45 74.9328402(21) 10.2(2) s β Ga 7/2+
Zn 126.94(9) keV 5# s β? Ga 1/2−
IT? Zn
Zn 30 46 75.9331150(16) 5.7(3) s β Ga 0+
Zn 30 47 76.9368872(21) 2.08(5) s β Ga 7/2+
Zn 772.440(15) keV 1.05(10) s β (66%) Ga 1/2−
IT (34%) Zn
Zn 30 48 77.9382892(21) 1.47(15) s β Ga 0+
β, n? Ga
Zn 2673.7(6) keV 320(6) ns IT Zn (8+)
Zn 30 49 78.9426381(24) 746(42) ms β (98.3%) Ga 9/2+
β, n (1.7%) Ga
Zn 942(10) keV >200 ms β? Ga 1/2+
IT? Zn
Zn 30 50 79.9445529(28) 562.2(30) ms β (98.64%) Ga 0+
β, n (1.36%) Ga
Zn 30 51 80.9504026(54) 299.4(21) ms β (77%) Ga (1/2+, 5/2+)
β, n (23%) Ga
β, 2n? Ga
Zn 30 52 81.9545741(33) 177.9(25) ms β, n (69%) Ga 0+
β (31%) Ga
β, 2n? Ga
Zn 30 53 82.96104(32)# 100(3) ms β, n (71%) Ga 3/2+#
β (29%) Ga
β, 2n? Ga
Zn 30 54 83.96583(43)# 54(8) ms β, n (73%) Ga 0+
β (27%) Ga
β, 2n? Ga
Zn 30 55 84.97305(54)# 40# ms β? Ga 5/2+#
β, n? Ga
β, 2n? Ga
Zn 30 56 85.97846(54)# β? Ga 0+
β, n? Ga
Zn 30 57
This table header & footer:
  1. Zn – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Believed to undergo ββ decay to Ni with a half-life over 6.0×10 y
  9. Believed to undergo ββ decay to Ge with a half-life over 3.8×10 y

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Zinc". CIAAW. 2007.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Roost, E.; Funck, E.; Spernol, A.; Vaninbroukx, R. (1972). "The decay of Zn". Zeitschrift für Physik. 250 (5): 395–412. Bibcode:1972ZPhy..250..395D. doi:10.1007/BF01379752. S2CID 124728537.
  5. D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction" (PDF). Assumption University Journal of Technology. 6 (4): 199–219.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. "Zn ε decay" (PDF). NNDC Chart of Nuclides.
  8. Nies, L.; Canete, L.; Dao, D. D.; Giraud, S.; Kankainen, A.; Lunney, D.; Nowacki, F.; Bastin, B.; Stryjczyk, M.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Eronen, T.; Fischer, P.; Flayol, M.; Girard Alcindor, V.; Herlert, A.; Jokinen, A.; Khanam, A.; Köster, U.; Lange, D.; Moore, I. D.; Müller, M.; Mougeot, M.; Nesterenko, D. A.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; de Roubin, A.; Rubchenya, V.; Schweiger, Ch.; Schweikhard, L.; Vilen, M.; Äystö, J. (30 November 2023). "Further Evidence for Shape Coexistence in Zn 79 m near Doubly Magic Ni 78". Physical Review Letters. 131 (22). arXiv:2310.16915. doi:10.1103/PhysRevLett.131.222503.
  9. ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.

External links

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: