Misplaced Pages

4-Amino-1-butanol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Organic compound and GABA analogue and precursor
4-Amino-1-butanol
Names
IUPAC name 4-aminobutan-1-ol
Other names 4-Amino-1-butanol; 4-Aminobutanol; 4-Hydroxybutylamine; 4-Hydroxy-n-butylamine; N-(4-Hydroxybutyl)amine
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.045 Edit this at Wikidata
EC Number
  • 236-364-4
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C4H11NO/c5-3-1-2-4-6/h6H,1-5H2Key: BLFRQYKZFKYQLO-UHFFFAOYSA-N
SMILES
  • C(CCO)CN
Properties
Chemical formula C4H11NO
Molar mass 89.138 g·mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

4-Amino-1-butanol, or 4-aminobutanol, also known as 4-hydroxybutylamine, is an alkanolamine and an analogue and precursor of the neurotransmitter γ-aminobutyric acid (GABA).

The structural relation of 1,4-butanediol (1,4-BD) to γ-hydroxybutyric acid (GHB) is analogous to the relation of 4-amino-1-butanol to GABA. 1,4-BD is a known prodrug of GHB which is converted into it through the actions of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). γ-Hydroxybutyraldehyde (GHBAL) is an intermediate in this pathway, whereas the analogous intermediate structure for 4-amino-1-butanol and GABA is γ-aminobutyraldehyde (GABAL). Similar to the conversion of 1,4-BD into GHB, 4-amino-1-butanol is converted into GABAL by aldehyde reductase (ALR) and GABAL is converted into GABA by ALDH.

References

  1. ^ "4-Amino-1-butanol". PubChem. Retrieved 8 September 2024.
  2. ^ Storer, R. James; Ferrante, Antonio (10 October 1997). "Radiochemical Assay of Diamine Oxidase". Polyamine Protocols. Methods in Molecular Biology. Vol. 79. New Jersey: Humana Press. pp. 91–96. doi:10.1385/0-89603-448-8:91. ISBN 978-0-89603-448-8. PMID 9463822. In biological mixtures γ-aminobutyraldehyde may be alternatively oxidized by aldehyde dehydrogenases (EC 1.2.1.3) to γ-aminobutyric acid (GABA) (11—13). The formation of 4-amino-1-butanol is also possible through reduction by aldehyde dehydrogenase and/or alcohol dehydrogenase (13,14), thus preventing cyclization. Other fates of putrescine in biological mixtures include the acetylation to acetylputrescine by an N-acetyltransferase and then oxidation by monoamine oxidase (EC 1.4.3.4) (11,17). Fig 1 Fates of putrescine in biological mixtures
  3. Takahashi H, Uchikura K, Takahashi H (June 1961). "Relationship between pharmacological actions on the mammalian ileum and chemical structure of gamma-aminobutyric acid". Jpn J Physiol. 11 (3): 229–237. doi:10.2170/jjphysiol.11.229. PMID 13774871.
  4. Takahashi H, Koshino C, Ikeda O (February 1962). "Relationship between the hypotensive activity and chemical structure of gamma-aminobutyric acid in the rabbit". Jpn J Physiol. 12: 97–105. doi:10.2170/jjphysiol.12.97. PMID 13919036.
  5. ^ Felmlee MA, Morse BL, Morris ME (January 2021). "γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology". AAPS J. 23 (1): 22. doi:10.1208/s12248-020-00543-z. PMC 8098080. PMID 33417072.
  6. ^ Tay E, Lo WK, Murnion B (2022). "Current Insights on the Impact of Gamma-Hydroxybutyrate (GHB) Abuse". Subst Abuse Rehabil. 13: 13–23. doi:10.2147/SAR.S315720. PMC 8843350. PMID 35173515.
  7. ^ Rashmi, Deo; Zanan, Rahul; John, Sheeba; Khandagale, Kiran; Nadaf, Altafhusain (2018). "γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications". Studies in Natural Products Chemistry. Vol. 57. Elsevier. pp. 413–452. doi:10.1016/b978-0-444-64057-4.00013-2. ISBN 978-0-444-64057-4. Alternate pathways of GABA synthesis from putrescine and other polyamines have also been reported . Here, γ-aminobutyraldehyde, an intermediate from polyamine degradation reaction via combined activities of diamine oxidase (DAO, E.C. 1.4.3.6) and 4-aminobutyraldehyde dehydrogenase (ABALDH), leads to the synthesis of GABA . In response to abiotic stresses, GABA is also reported to be synthesized from proline via D1-pyrroline intermediate formation and also by a nonenzymatic reaction . However, GABA synthesis from polyamine pathways is minor in the brain, although they play a significant role in the developing brain and retina . But GABA can be formed from putrescine in the mammalian brain .
  8. ^ Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (September 2012). "Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress". Plant Sci. 193–194: 130–135. Bibcode:2012PlnSc.193..130S. doi:10.1016/j.plantsci.2012.06.001. PMID 22794926.
  9. ^ Benedetti MS, Dostert P (1994). "Contribution of amine oxidases to the metabolism of xenobiotics". Drug Metab Rev. 26 (3): 507–535. doi:10.3109/03602539408998316. PMID 7924902. MAO also catalyses the deamination of a natural brain constituent, monoacetyl-putrescine, producing y-acetylaminobutyraldehyde, which in turn participates in the formation of brain GABA .
GABA receptor modulators
Ionotropic
GABAATooltip γ-Aminobutyric acid A receptor
GABAATooltip γ-Aminobutyric acid A-rho receptor
Metabotropic
GABABTooltip γ-Aminobutyric acid B receptor
See also
Receptor/signaling modulators
GABAA receptor positive modulators
GABA metabolism/transport modulators


Stub icon

This article about an organic compound is a stub. You can help Misplaced Pages by expanding it.

Categories: