Misplaced Pages

Boron monofluoride monoxide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Boron oxyfluoride
Names
IUPAC name Fluoro(oxo)borane
Other names boron monofluoride monoxide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1/BFO/c2-1-3Key: FHYICEHKTRQYRP-UHFFFAOYSA-N
SMILES
  • B(=O)F
Properties
Chemical formula BFO
Molar mass 45.81 g·mol
Appearance Gas
Thermochemistry
Std enthalpy of
formation
fH298)
48.0 ± 3.0 kcal/mol
Related compounds
Related oxyhalides boron oxychloride
Related compounds boron monofluoride
boron monoxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Boron monofluoride monoxide or oxoboryl fluoride or fluoroxoborane is an unstable inorganic molecular substance with formula FBO. It is also called boron fluoride oxide, fluoro(oxo)borane or fluoro-oxoborane. The molecule is stable at high temperatures, but below 1000 °C condenses to a trimer (BOF)3 called trifluoroboroxin. FBO can be isolated as a triatomic non-metallic molecule in an inert gas matrix, and has been condensed in solid neon and argon. When an attempt is made to condense the gas to a solid in bulk, a polymeric glass is formed, which is deficient in fluoride, and when heated forms a glassy froth like popcorn. Boron fluoride oxide has been studied because of its production in high energy rocket fuels that contain boron and fluorine, and in the form of an oxyfluoride glass. BOF glass is unusual in that it can condense directly from gas.

Properties

Monomer

The FBO molecule is linear with structure F-B=O. The F-B bond length is 1.283 Å, and B-O bond is 1.207 Å.

The infrared spectrum of BFO has vibrational bands at 1900, 1050, and 500 cm. Spectroscopic constants of the BFO molecule are B=9349.2711 MHz D=3.5335 kHz and for BFO molecule they are B=9347.3843 MHz D=3.5273 kHz The monomer is stable either at low pressures, or temperatures over 1000 °C. Below this temperature, the monomers associate to form a trimer called trifluoroboroxole.

Heat of formation ΔfH
298 K is predicted to be -146.1 kcal/mol. Proton affinity 149.6 kcal/mol.

Trimer

If a hot BFO gas is cooled slowly it dismutates back into B2O3 and BF3. At room temperature this dismutation completes in an hour.

Boron fluoride oxide forms a trimer with a ring composed of alternating oxygen and boron atoms, with fluorine bonded to the boron. (BFO)3. The ring structure puts it in the class of boroxols. This is also called trifluoroboroxin. The trimer is the predominant form in gas at 1000K. When heated to 1200K it mostly converts to the monomer BFO. Boron oxyfluoride can be condensed from vapour to a fluorine deficient glass at temperatures below 190° by very rapid cooling. When heated this deposit has a temperature at which it loses more BF3 to form a frothy or porous glass that resembles popcorn. The glass deposited at lower temperatures has a higher proportion of fluorine. Deposits at -40 °C are predicted to have a 1:1 ratio of fluorine to oxygen. Below -135° (BFO)3 is stable.

The heat of formation of the trimer from the monomer (BFO)3 → 3BFO is 131 kcal/mol.

Glass

Boron oxyfluoride glass is transparent and colourless. It is stable in dry air, but it is hygroscopic and in normal air becomes white and opaque. When heated the glass will encounter a glass transition temperature (Tg) at which it ceases to be a glass, and produces BF3 gas and a boron oxyfluoride with less fluorine is left behind. This glass transition temperature is determined from where the pressure of BF3 produced exceeds the strength of the glass. The hypothetical structure of BOF glass, is of long chains of B-O-B-O with fluorine attached to each boron. These can be considered as BO2F triangles linked in a chain by O atoms. These chains are tangled up like spaghetti in the glass. When the substance becomes fluorine deficient, crosslinks with oxygen form between the chains, and it becomes more two dimensional in structure. BF3 is produced when the terminals of two linear −(BF)O− chains join with each other. These ends contain -O-BF2, and when two meet, BF3 can be eliminated and the chain extended with oxygen.

Occurrence

BFO is expected to form in supernovae II output in gas between 1,000 and 2,000 °C and pressures around 10 bar.

Preparation

Otto Ruff noticed that a mixture of BF3 and SiF4 passing over molten B2O3 produced some SiO2 and redistributed B2O3 into cold parts of the reaction tube. He speculated that there must be some heat stable intermediate that converted back into the original components on cooling. Several years later, Paul Baumgarten and Werner Bruns made the boron oxyfluoride trimer by passing BF3 over solid B2O3 at 450 °C.

BFO is an intermediate in the hydrolysis of BF3 along with BF(OH)2, BF2OH and boric acid.

  • BF3 + H2O → BFO + 2HF;
  • BF2OH → BFO + HF;
  • BF(OH)2 → BFO + H2O

Another way in which BFO can be made is to vapourise B2O3 with BF3.

When BF3 is heated with air, BFO gas predominates from 2800° to 4000 °C, being a maximum at 3200°. Above 4000 °C BO dominates.

Hot BF3 passed over some oxides such as SiO2 forms BFO. Other oxides that can yield boron oxyfluoride are magnesium oxide, titanium dioxide, carbonates or alumina.

In the plasma phase HF reacts with BO2H
2, B2OH, B3O
4, B2O
4, B2O
2, B2OH to make FBO, and other products including FBOH and FBO.

Related

The B-O-F molecule theoretically exists but it releases energy when it rearranges to F-B-O. A related molecule is BOF2. Molecules related to the trimer include B3O3ClF2, B3O3Cl2F, and (BOCl)3.

FBO is predicted to be able to insert noble gas atoms between the fluorine and boron atom yielding FArBO, FKrBO and FXeBO. The molecules are predicted to be linear.

Uses

Boron oxyfluoride could be used in boriding steel. By using a gas, sticking solids onto the steel is avoided. Also this method allows control of the boron concentration, and mostly forms Fe2B instead of the more brittle FeB. Burning boron releases much energy, so its use in explosives or fuel is being researched. To maximise energy output, both fluorine and oxygen are used to react, and thus FBO and related molecules are formed and may be in the exhaust.

References

  1. Larson, J. W.; McMahon, T. B. (1987). "Boron monofluoride monoxide". 26 (24). NIST: 4018. doi:10.1021/ic00271a011. Retrieved 20 May 2015. {{cite journal}}: Cite journal requires |journal= (help)
  2. Kuchitsu, Kozo (2013-03-09). Structure of Free Polyatomic Molecules: Basic Data. Springer Science & Business Media. p. 28. ISBN 9783642457487.
  3. Jacox, Marilyn E. (December 1994). "The vibrational energy levels of small transient molecules isolated in neon and argon matrices". Chemical Physics. 189 (2): 149–170. Bibcode:1994CP....189..149J. doi:10.1016/0301-0104(94)00143-X.
  4. Boussard-Plédel, Catherine; Le Floch, Marie; Fonteneau, Gilles; Lucas, Jacques (July 1997). "Vapor Phase Deposition of Foaming Boron Oxyfluoride Vitreous Materials". Materials Research Bulletin. 32 (7): 805–811. doi:10.1016/S0025-5408(97)00050-0.
  5. ^ Boussard-Plédel, Catherine; Le Floch, Marie; Fonteneau, Gilles; Lucas, Jacques; Sinbandhit, Sourisak; Shao, J.; Angell, C.A.; Emery, Joël; Buzaré, J.Y. (February 1997). "The structure of a boron oxyfluoride glass, an inorganic cross-linked chain polymer". Journal of Non-Crystalline Solids. 209 (3): 247–256. Bibcode:1997JNCS..209..247B. doi:10.1016/S0022-3093(96)00548-0.
  6. ^ Polishchuk, S. A.; Ignat’eva, L. N.; Marchenko, Yu. V.; Bouznik, V. M. (5 March 2011). "Oxyfluoride glasses (A review)". Glass Physics and Chemistry. 37 (1): 1–20 (14). doi:10.1134/S108765961101010X. S2CID 97609959.
  7. Kawashima, Yoshiyuki; Kawaguchi, Kentarou; Endo, Yasuki; Hirota, Eizi (1987). "Infrared diode laser and microwave spectra and molecular structure of an unstable molecule, FBO". The Journal of Chemical Physics. 87 (4): 2006. Bibcode:1987JChPh..87.2006K. doi:10.1063/1.453175.
  8. ^ Yoder, M.John (December 1974). "High temperature arc studies of infrared radiation from boron and tungsten oxides". Journal of Quantitative Spectroscopy and Radiative Transfer. 14 (12): 1317–1328. Bibcode:1974JQSRT..14.1317Y. doi:10.1016/0022-4073(74)90100-9.
  9. Gatehouse, Bethany; Müller, Holger S.P.; Gerry, Michael C.L. (July 1998). "Hyperfine Constants and Nuclear Shieldings from the Microwave Spectra of FBO, ClBO, and FBS". Journal of Molecular Spectroscopy. 190 (1): 157–167. Bibcode:1998JMoSp.190..157G. doi:10.1006/jmsp.1998.7565. PMID 9645936.
  10. Farber, M.; Blauer, J. (1962). "The heat of formation and entropy of BOF". Transactions of the Faraday Society. 58: 2090. doi:10.1039/TF9625802090.
  11. Thevenot, Francois H. J.; Goeuriot, Patrice M. V.; Driver, Julian H.; Lebrun, Jean-Paul R. (1982). "Apparatus for the boronizing of pieces made of metal or cermet and surface-bornished pieces".
  12. Nguyen, Minh Tho; Vanquickenborne, L. G.; Sana, Michel; Leroy, Georges (May 1993). "Heats of formation and proton affinities of some oxoborons (R-B≡O) and sulfidoborons (R-B≡S) with R = hydrogen, fluorine, chlorine, and methyl group". The Journal of Physical Chemistry. 97 (20): 5224–5227. doi:10.1021/j100122a010.
  13. ^ Siegel, B (December 1968). "The oxyhalides of the III-B elements". Inorganica Chimica Acta Reviews. 2: 137–146. doi:10.1016/0073-8085(68)80019-1.
  14. Goubeau, J.; Keller, H. (December 1952). "Über Boroxol-Verbindungen Darstellung, physikalische und chemische Eigenschaften". Zeitschrift für anorganische und allgemeine Chemie (in German). 267 (1–3): 1–26. doi:10.1002/zaac.19522670102.
  15. Fisher, H. D.; Kiehl, J.; Cane, A. (June 1961). "Infrared Spectra and Thermodynamic Properties of Trifluoroboroxine (FBO)3 Final Report HTC-61-90". Culver City, California: Hughs Tool Company Aircraft Division. Archived from the original on December 27, 2016. Retrieved 27 November 2016.
  16. Hildenbrand, Donald L.; Theard, Lowell P.; Saul, Albert M. (1963). "Transpiration and Mass Spectrometric Studies of Equilibria Involving BOF(g) and (BOF)3(g)". The Journal of Chemical Physics. 39 (8): 1973. Bibcode:1963JChPh..39.1973H. doi:10.1063/1.1734569.
  17. Boussard-Plédel, Catherine; Fonteneau, Gilles; Lucas, Jacques (July 1995). "Boron oxyfluoride glasses in the B-O-F system: new polymeric spaghetti-type glasses". Journal of Non-Crystalline Solids. 188 (1–2): 147–152. doi:10.1016/0022-3093(95)00183-2.
  18. Lucas, Jacques (May 1995). "Non-conventional spaghetti-type glasses". Journal of Non-Crystalline Solids. 184: 21–24. Bibcode:1995JNCS..184...21L. doi:10.1016/0022-3093(95)00087-9.
  19. Hoppe, P.; Lodders, K.; Strebel, R.; Amari, S.; Lewis, R. S. (10 April 2001). "Boron in Presolar Silicon Carbide Grains from Supernovae". The Astrophysical Journal. 551 (1): 478–485. Bibcode:2001ApJ...551..478H. doi:10.1086/320075.
  20. ^ Baumgarten, Paul; Bruns, Werner (6 September 1939). "Über die Umsetzung von Borfluorid mit Bortrioxyd, Boraten, Carbonaten und Nitraten und zur Kenntnis eines mutmaßlichen Boroxyfluorides (BOF)3". Berichte der Deutschen Chemischen Gesellschaft (A and B Series) (in German). 72 (9): 1753–1762. doi:10.1002/cber.19390720921.
  21. Ruff, Otto; Braida, A.; Bretschneider, O.; Menzel, W.; Plaut, H. (18 May 1932). "Die Darstellung, Dampfdrucke und Dichten des BF3, AsF5 und BrF3". Zeitschrift für anorganische und allgemeine Chemie (in German). 206 (1): 59–64. doi:10.1002/zaac.19322060108.
  22. Baumgarten, Paul; Bruns, Werner (9 July 1941). "Über die Umsetzung von Borfluorid mit Aluminiumoxyd, Siliciumdioxyd, Titandioxyd und Silikaten und die mögliche Verwendung dieser Reaktionen für den Aufschluß aluminiumhaltiger Silikate zwecks Herstellung für die Aluminiumgewinnung verwendbarer Ausgangsmaterialien". Berichte der Deutschen Chemischen Gesellschaft (A and B Series) (in German). 74 (7): 1232–1236. doi:10.1002/cber.19410740717.
  23. Zhang, Lei; Zhang, Weijiang; Xu, Jiao; Ren, Xin (7 December 2014). "Synthesis of enriched B boric acid of nuclear grade". Transactions of Tianjin University. 20 (6): 458–462. Bibcode:2014TrTU...20..458Z. doi:10.1007/s12209-014-2303-x. S2CID 91517483.
  24. Goeuriot, Patrice; Thévenot, François; Driver, Julian H.; Magnin, Thierry (April 1983). "Methods for examining brittle layers obtained by a boriding surface treatment (Borudif)". Wear. 86 (1): 1–10. doi:10.1016/0043-1648(83)90083-2.
  25. ^ Goeuriot, P.; Thevenot, F.; Driver, J.H. (March 1981). "Surface treatment of steels: Borudif, a new boriding process". Thin Solid Films. 78 (1): 67–76. Bibcode:1981TSF....78...67G. doi:10.1016/0040-6090(81)90418-1.
  26. ^ Smolanoff, Jason; Lapicki, Adom; Anderson, Scott L.; Sowa-Resat, Marianne (26 Dec 1994). "A Cluster Beam Study of Boron Oxide Chemistry With HF". Retrieved 1 December 2016.
  27. So, Suk Ping (May 1985). "Geometries and stabilities of XBO and BOX, (X F, Cl)". Journal of Molecular Structure: THEOCHEM. 122 (3–4): 311–316. doi:10.1016/0166-1280(85)80091-9.
  28. Soto, Maribel R. (April 1995). "Rate Constant Determinations for HBO + F Channels from ab Initio Reaction Path Calculations". The Journal of Physical Chemistry. 99 (17): 6540–6547. doi:10.1021/j100017a039.
  29. Mathews, C.Weldon (January 1966). "The 4465-Å emission spectrum of the BOF2 molecule". Journal of Molecular Spectroscopy. 19 (1–4): 203–223. Bibcode:1966JMoSp..19..203M. doi:10.1016/0022-2852(66)90242-6.
  30. Latimer, B.; Devlin, J.P. (January 1967). "Vibrational spectra of fluorine and chlorine derivatives of boroxine—II". Spectrochimica Acta Part A: Molecular Spectroscopy. 23 (1): 81–88. Bibcode:1967AcSpA..23...81L. doi:10.1016/0584-8539(67)80210-1.
  31. Lin, Tsun-Yi; Hsu, Jeng-Bin; Hu, Wei-Ping (February 2005). "Theoretical prediction of new noble-gas molecules OBNgF (Ng=Ar, Kr, and Xe)". Chemical Physics Letters. 402 (4–6): 514–518. Bibcode:2005CPL...402..514L. doi:10.1016/j.cplett.2004.12.090.
Boron compounds
Boron pnictogenides
Boron halides
Acids
Boranes
Boron oxides and sulfides
Carbides
Organoboron compounds
Fluorine compounds
Salts and covalent derivatives of the fluoride ion
HF ?HeF2
LiF BeF2 BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2 Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KF CaF
CaF2
ScF3 TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2 GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbF SrF
SrF2
YF3 ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2 InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsF BaF2   LuF3 HfF4 TaF5 WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
?PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrF RaF2   LrF3 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaF3 CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF2
DyF3
DyF4
HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
AcF3 ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
Fm Md No
PF−6, AsF−6, SbF−6 compounds
AlF−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6, GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Chemical formulas
Oxygen compounds
Categories: