Misplaced Pages

Isotopes of gallium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Gallium-64)

Isotopes of gallium (31Ga)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Ga synth 9.5 h β Zn
Ga synth 3.3 d ε Zn
Ga synth 1.2 h β Zn
Ga 60.1% stable
Ga synth 21 min β Ge
ε Zn
Ga 39.9% stable
Ga synth 14.1 h β Ge
Ga synth 4.9 h β Ge
Standard atomic weight Ar°(Ga)

Natural gallium (31Ga) consists of a mixture of two stable isotopes: gallium-69 and gallium-71. Twenty-nine radioisotopes are known, all synthetic, with atomic masses ranging from 60 to 89; along with three nuclear isomers, Ga, Ga and Ga. Most of the isotopes with atomic mass numbers below 69 decay to isotopes of zinc, while most of the isotopes with masses above 71 decay to isotopes of germanium. Among them, the most commercially important radioisotopes are gallium-67 and gallium-68.

Gallium-67 (half-life 3.3 days) is a gamma-emitting isotope (the gamma ray emitted immediately after electron capture) used in standard nuclear medical imaging, in procedures usually referred to as gallium scans. It is usually used as the free ion, Ga. It is the longest-lived radioisotope of gallium.

The shorter-lived gallium-68 (half-life 68 minutes) is a positron-emitting isotope generated in very small quantities from germanium-68 in gallium-68 generators or in much greater quantities by proton bombardment of Zn in low-energy medical cyclotrons, for use in a small minority of diagnostic PET scans. For this use, it is usually attached as a tracer to a carrier molecule (for example the somatostatin analogue DOTATOC), which gives the resulting radiopharmaceutical a different tissue-uptake specificity from the ionic Ga radioisotope normally used in standard gallium scans.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Ga 31 29 59.95750(22)# 72.4(17) ms β (98.4%) Zn (2+)
β, p (1.6%) Cu
β, α? (<0.023%) Ni
Ga 31 30 60.949399(41) 165.9(25) ms β Zn 3/2−
β, p? (<0.25%) Cu
Ga 31 31 61.94418964(68) 116.122(21) ms β Zn 0+
Ga 31 32 62.9392942(14) 32.4(5) s β Zn 3/2−
Ga 31 33 63.9368404(15) 2.627(12) min β Zn 0(+#)
Ga 42.85(8) keV 21.9(7) μs IT Ga (2+)
Ga 31 34 64.93273442(85) 15.133(28) min β Zn 3/2−
Ga 31 35 65.9315898(12) 9.304(8) h β Zn 0+
Ga 31 36 66.9282023(13) 3.2617(4) d EC Zn 3/2−
Ga 31 37 67.9279802(15) 67.842(16) min β Zn 1+
Ga 31 38 68.9255735(13) Stable 3/2− 0.60108(50)
Ga 31 39 69.9260219(13) 21.14(5) min β (99.59%) Ge 1+
EC (0.41%) Zn
Ga 31 40 70.92470255(87) Stable 3/2− 0.39892(50)
Ga 31 41 71.92636745(88) 14.025(10) h β Ge 3−
Ga 119.66(5) keV 39.68(13) ms IT Ga (0+)
Ga 31 42 72.9251747(18) 4.86(3) h β Ge 1/2−
Ga 0.15(9) keV <200 ms IT? Ga 3/2−
β Ge
Ga 31 43 73.9269457(32) 8.12(12) min β Ge (3−)
Ga 59.571(14) keV 9.5(10) s IT (>75%) Ga (0)(+#)
β? (<25%) Ge
Ga 31 44 74.92650448(72) 126(2) s β Ge 3/2−
Ga 31 45 75.9288276(21) 30.6(6) s β Ge 2−
Ga 31 46 76.9291543(26) 13.2(2) s β Ge (88%) 3/2−
Ge (12%)
Ga 31 47 77.9316109(11) 5.09(5) s β Ge 2−
Ga 498.9(5) keV 110(3) ns IT Ga
Ga 31 48 78.9328516(13) 2.848(3) s β (99.911%) Ge 3/2−
β, n (0.089%) Ge
Ga 31 49 79.9364208(31) 1.9(1) s β (99.14%) Ge 6−
β, n (.86%) Ge
Ga 22.45(10) keV 1.3(2) s β Ge 3−
β, n? Ge
IT Ga
Ga 31 50 80.9381338(35) 1.217(5) s β (87.5%) Ge 5/2−
β, n (12.5%) Ge
Ga 31 51 81.9431765(26) 600(2) ms β (78.8%) Ge 2−
β, n (21.2%) Ge
β, 2n? Ge
Ga 140.7(3) keV 93.5(67) ns IT Ga (4−)
Ga 31 52 82.9471203(28) 310.0(7) ms β, n (85%) Ge 5/2−#
β (15%) Ge
β, 2n? Ge
Ga 31 53 83.952663(32) 97.6(12) ms β (55%) Ge 0−#
β, n (43%) Ge
β, 2n (1.6%) Ge
Ga 31 54 84.957333(40) 95.3(10) ms β, n (77%) Ge (5/2−)
β (22%) Ge
β, 2n (1.3%) Ge
Ga 31 55 85.96376(43)# 49(2) ms β, n (69%) Ge
β, 2n (16.2%) Ge
β (15%) Ge
Ga 31 56 86.96901(54)# 29(4) ms β, n (81%) Ge 5/2−#
β, 2n (10.2%) Ge
β (9%) Ge
Ga 31 57 87.97596(54)# β? Ge
β, n? Ge
Ga 31 58
This table header & footer:
  1. Ga – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  5. Bold symbol as daughter – Daughter product is stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  8. Deexcitation gamma used in medical imaging
  9. Medically useful radioisotope
  10. Order of ground state and isomer is uncertain.

Gallium-67

Gallium-67 (
Ga
) has a half-life of 3.26 days and decays by electron capture and gamma emission (in de-excitation) to stable zinc-67. It is a radiopharmaceutical used in gallium scans (alternatively, the shorter-lived gallium-68 may be used). This gamma-emitting isotope is imaged by gamma camera.

Gallium-68

Gallium-68 (
Ga
) is a positron emitter with a half-life of 68 minutes, decaying to stable zinc-68. It is a radiopharmaceutical, generated in situ from the electron capture of germanium-68 (half-life 271 days) owing to its short half-life. This positron-emitting isotope can be imaged efficiently by PET scan (see gallium scan); alternatively, the longer-lived gallium-67 may be used. Gallium-68 is only used as a positron emitting tag for a ligand which binds to certain tissues, such as DOTATOC, which is a somatostatin analogue useful for imaging neuroendocrine tumors. Gallium-68 DOTA scans are increasingly replacing octreotide scans (a type of indium-111 scan using octreotide as a somatostatin receptor ligand). The
Ga
is bound to a chemical such as DOTATOC and the positrons it emits are imaged by PET-CT scan. Such scans are useful in locating neuroendocrine tumors and pancreatic cancer. Thus, octreotide scanning for NET tumors is being increasingly replaced by gallium-68 DOTATOC scan.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Gallium". CIAAW. 1987.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Kumlin, J; Dam, J; Langkjaer, N; Chua, C.J.; Borjian, S.; Kassaian, A; Hook, B; Zeisler, S; Schaffer, P; Helge, Thisgaard (October 2019). "Multi-Curie Production of Ga-68 on a Biomedical Cyclotron". Conference: EANM'19. Retrieved 13 December 2019.
  5. Thisgaard, Helge; Kumlin, Joel; Langkjær, Niels; Chua, Jansen; Hook, Brian; Jensen, Mikael; Kassaian, Amir; Zeisler, Stefan; Borjian, Sogol; Cross, Michael; Schaffer, Paul (2021-01-07). "Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE". EJNMMI Radiopharmacy and Chemistry. 6 (1): 1. doi:10.1186/s41181-020-00114-9. ISSN 2365-421X. PMC 7790954. PMID 33411034.
  6. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  7. ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
  8. Hofman, M.S.; Kong, G.; Neels, O.C.; Eu, P.; Hong, E.; Hicks, R.J. (2012). "High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours". Journal of Medical Imaging and Radiation Oncology. 56 (1): 40–47. doi:10.1111/j.1754-9485.2011.02327.x. PMID 22339744. S2CID 21843609.
  9. Scott, A, et al. (2018). "Management of Small Bowel Neuroendocrine Tumors". Journal of Oncology Practice. 14 (8): 471–482. doi:10.1200/JOP.18.00135. PMC 6091496. PMID 30096273.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: