| |||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ga) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural gallium (31Ga) consists of a mixture of two stable isotopes: gallium-69 and gallium-71. Twenty-nine radioisotopes are known, all synthetic, with atomic masses ranging from 60 to 89; along with three nuclear isomers, Ga, Ga and Ga. Most of the isotopes with atomic mass numbers below 69 decay to isotopes of zinc, while most of the isotopes with masses above 71 decay to isotopes of germanium. Among them, the most commercially important radioisotopes are gallium-67 and gallium-68.
Gallium-67 (half-life 3.3 days) is a gamma-emitting isotope (the gamma ray emitted immediately after electron capture) used in standard nuclear medical imaging, in procedures usually referred to as gallium scans. It is usually used as the free ion, Ga. It is the longest-lived radioisotope of gallium.
The shorter-lived gallium-68 (half-life 68 minutes) is a positron-emitting isotope generated in very small quantities from germanium-68 in gallium-68 generators or in much greater quantities by proton bombardment of Zn in low-energy medical cyclotrons, for use in a small minority of diagnostic PET scans. For this use, it is usually attached as a tracer to a carrier molecule (for example the somatostatin analogue DOTATOC), which gives the resulting radiopharmaceutical a different tissue-uptake specificity from the ionic Ga radioisotope normally used in standard gallium scans.
List of isotopes
Nuclide |
Z | N | Isotopic mass (Da) |
Half-life |
Decay mode |
Daughter isotope |
Spin and parity |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion | Range of variation | |||||||||||||||||
Ga | 31 | 29 | 59.95750(22)# | 72.4(17) ms | β (98.4%) | Zn | (2+) | ||||||||||||
β, p (1.6%) | Cu | ||||||||||||||||||
β, α? (<0.023%) | Ni | ||||||||||||||||||
Ga | 31 | 30 | 60.949399(41) | 165.9(25) ms | β | Zn | 3/2− | ||||||||||||
β, p? (<0.25%) | Cu | ||||||||||||||||||
Ga | 31 | 31 | 61.94418964(68) | 116.122(21) ms | β | Zn | 0+ | ||||||||||||
Ga | 31 | 32 | 62.9392942(14) | 32.4(5) s | β | Zn | 3/2− | ||||||||||||
Ga | 31 | 33 | 63.9368404(15) | 2.627(12) min | β | Zn | 0(+#) | ||||||||||||
Ga | 42.85(8) keV | 21.9(7) μs | IT | Ga | (2+) | ||||||||||||||
Ga | 31 | 34 | 64.93273442(85) | 15.133(28) min | β | Zn | 3/2− | ||||||||||||
Ga | 31 | 35 | 65.9315898(12) | 9.304(8) h | β | Zn | 0+ | ||||||||||||
Ga | 31 | 36 | 66.9282023(13) | 3.2617(4) d | EC | Zn | 3/2− | ||||||||||||
Ga | 31 | 37 | 67.9279802(15) | 67.842(16) min | β | Zn | 1+ | ||||||||||||
Ga | 31 | 38 | 68.9255735(13) | Stable | 3/2− | 0.60108(50) | |||||||||||||
Ga | 31 | 39 | 69.9260219(13) | 21.14(5) min | β (99.59%) | Ge | 1+ | ||||||||||||
EC (0.41%) | Zn | ||||||||||||||||||
Ga | 31 | 40 | 70.92470255(87) | Stable | 3/2− | 0.39892(50) | |||||||||||||
Ga | 31 | 41 | 71.92636745(88) | 14.025(10) h | β | Ge | 3− | ||||||||||||
Ga | 119.66(5) keV | 39.68(13) ms | IT | Ga | (0+) | ||||||||||||||
Ga | 31 | 42 | 72.9251747(18) | 4.86(3) h | β | Ge | 1/2− | ||||||||||||
Ga | 0.15(9) keV | <200 ms | IT? | Ga | 3/2− | ||||||||||||||
β | Ge | ||||||||||||||||||
Ga | 31 | 43 | 73.9269457(32) | 8.12(12) min | β | Ge | (3−) | ||||||||||||
Ga | 59.571(14) keV | 9.5(10) s | IT (>75%) | Ga | (0)(+#) | ||||||||||||||
β? (<25%) | Ge | ||||||||||||||||||
Ga | 31 | 44 | 74.92650448(72) | 126(2) s | β | Ge | 3/2− | ||||||||||||
Ga | 31 | 45 | 75.9288276(21) | 30.6(6) s | β | Ge | 2− | ||||||||||||
Ga | 31 | 46 | 76.9291543(26) | 13.2(2) s | β | Ge (88%) | 3/2− | ||||||||||||
Ge (12%) | |||||||||||||||||||
Ga | 31 | 47 | 77.9316109(11) | 5.09(5) s | β | Ge | 2− | ||||||||||||
Ga | 498.9(5) keV | 110(3) ns | IT | Ga | |||||||||||||||
Ga | 31 | 48 | 78.9328516(13) | 2.848(3) s | β (99.911%) | Ge | 3/2− | ||||||||||||
β, n (0.089%) | Ge | ||||||||||||||||||
Ga | 31 | 49 | 79.9364208(31) | 1.9(1) s | β (99.14%) | Ge | 6− | ||||||||||||
β, n (.86%) | Ge | ||||||||||||||||||
Ga | 22.45(10) keV | 1.3(2) s | β | Ge | 3− | ||||||||||||||
β, n? | Ge | ||||||||||||||||||
IT | Ga | ||||||||||||||||||
Ga | 31 | 50 | 80.9381338(35) | 1.217(5) s | β (87.5%) | Ge | 5/2− | ||||||||||||
β, n (12.5%) | Ge | ||||||||||||||||||
Ga | 31 | 51 | 81.9431765(26) | 600(2) ms | β (78.8%) | Ge | 2− | ||||||||||||
β, n (21.2%) | Ge | ||||||||||||||||||
β, 2n? | Ge | ||||||||||||||||||
Ga | 140.7(3) keV | 93.5(67) ns | IT | Ga | (4−) | ||||||||||||||
Ga | 31 | 52 | 82.9471203(28) | 310.0(7) ms | β, n (85%) | Ge | 5/2−# | ||||||||||||
β (15%) | Ge | ||||||||||||||||||
β, 2n? | Ge | ||||||||||||||||||
Ga | 31 | 53 | 83.952663(32) | 97.6(12) ms | β (55%) | Ge | 0−# | ||||||||||||
β, n (43%) | Ge | ||||||||||||||||||
β, 2n (1.6%) | Ge | ||||||||||||||||||
Ga | 31 | 54 | 84.957333(40) | 95.3(10) ms | β, n (77%) | Ge | (5/2−) | ||||||||||||
β (22%) | Ge | ||||||||||||||||||
β, 2n (1.3%) | Ge | ||||||||||||||||||
Ga | 31 | 55 | 85.96376(43)# | 49(2) ms | β, n (69%) | Ge | |||||||||||||
β, 2n (16.2%) | Ge | ||||||||||||||||||
β (15%) | Ge | ||||||||||||||||||
Ga | 31 | 56 | 86.96901(54)# | 29(4) ms | β, n (81%) | Ge | 5/2−# | ||||||||||||
β, 2n (10.2%) | Ge | ||||||||||||||||||
β (9%) | Ge | ||||||||||||||||||
Ga | 31 | 57 | 87.97596(54)# | β? | Ge | ||||||||||||||
β, n? | Ge | ||||||||||||||||||
Ga | 31 | 58 | |||||||||||||||||
This table header & footer: |
- Ga – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
-
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- Deexcitation gamma used in medical imaging
- Medically useful radioisotope
- Order of ground state and isomer is uncertain.
Gallium-67
Gallium-67 (
Ga
) has a half-life of 3.26 days and decays by electron capture and gamma emission (in de-excitation) to stable zinc-67. It is a radiopharmaceutical used in gallium scans (alternatively, the shorter-lived gallium-68 may be used). This gamma-emitting isotope is imaged by gamma camera.
Gallium-68
Gallium-68 (
Ga
) is a positron emitter with a half-life of 68 minutes, decaying to stable zinc-68. It is a radiopharmaceutical, generated in situ from the electron capture of germanium-68 (half-life 271 days) owing to its short half-life. This positron-emitting isotope can be imaged efficiently by PET scan (see gallium scan); alternatively, the longer-lived gallium-67 may be used. Gallium-68 is only used as a positron emitting tag for a ligand which binds to certain tissues, such as DOTATOC, which is a somatostatin analogue useful for imaging neuroendocrine tumors. Gallium-68 DOTA scans are increasingly replacing octreotide scans (a type of indium-111 scan using octreotide as a somatostatin receptor ligand). The
Ga
is bound to a chemical such as DOTATOC and the positrons it emits are imaged by PET-CT scan. Such scans are useful in locating neuroendocrine tumors and pancreatic cancer. Thus, octreotide scanning for NET tumors is being increasingly replaced by gallium-68 DOTATOC scan.
References
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Gallium". CIAAW. 1987.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Kumlin, J; Dam, J; Langkjaer, N; Chua, C.J.; Borjian, S.; Kassaian, A; Hook, B; Zeisler, S; Schaffer, P; Helge, Thisgaard (October 2019). "Multi-Curie Production of Ga-68 on a Biomedical Cyclotron". Conference: EANM'19. Retrieved 13 December 2019.
- Thisgaard, Helge; Kumlin, Joel; Langkjær, Niels; Chua, Jansen; Hook, Brian; Jensen, Mikael; Kassaian, Amir; Zeisler, Stefan; Borjian, Sogol; Cross, Michael; Schaffer, Paul (2021-01-07). "Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE". EJNMMI Radiopharmacy and Chemistry. 6 (1): 1. doi:10.1186/s41181-020-00114-9. ISSN 2365-421X. PMC 7790954. PMID 33411034.
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
- Hofman, M.S.; Kong, G.; Neels, O.C.; Eu, P.; Hong, E.; Hicks, R.J. (2012). "High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours". Journal of Medical Imaging and Radiation Oncology. 56 (1): 40–47. doi:10.1111/j.1754-9485.2011.02327.x. PMID 22339744. S2CID 21843609.
- Scott, A, et al. (2018). "Management of Small Bowel Neuroendocrine Tumors". Journal of Oncology Practice. 14 (8): 471–482. doi:10.1200/JOP.18.00135. PMC 6091496. PMID 30096273.
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.