Misplaced Pages

β-Hydroxy β-methylbutyryl-CoA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from HMB-CoA)

β-Hydroxy β-methylbutyryl-CoA
Names
IUPAC name 3′-O-Phosphonoadenosine 5′-ethyl}amino)-3-oxopropyl]amino}-2,2-dimethyl-4-oxobutyl dihydrogen diphosphate]
Systematic IUPAC name O-{methyl} O-ethyl}amino)-3-oxopropyl]amino}-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate
Other names β-hydroxyisovaleryl-CoA
3-hydroxyisovaleryl-CoA
3-hydroxy-3-methylbutyryl-CoA
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C26H44N7O18P3S/c1-25(2,20(37)23(38)29-6-5-15(34)28-7-8-55-16(35)9-26(3,4)39)11-48-54(45,46)51-53(43,44)47-10-14-19(50-52(40,41)42)18(36)24(49-14)33-13-32-17-21(27)30-12-31-22(17)33/h12-14,18-20,24,36-37,39H,5-11H2,1-4H3,(H,28,34)(H,29,38)(H,43,44)(H,45,46)(H2,27,30,31)(H2,40,41,42)/t14-,18-,19-,20+,24-/m1/s1Key: PEVZKILCBDEOBT-CITAKDKDSA-N
SMILES
  • CC(C)(CC(=O)SCCNC(=O)CCNC(=O)(C(C)(C)COP(=O)(O)OP(=O)(O)OC1(((O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)O)O
Properties
Chemical formula C26H44N7O18P3S
Molar mass 867.649946
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

β-Hydroxy β-methylbutyryl-coenzyme A (HMB-CoA), also known as 3-hydroxyisovaleryl-CoA, is a metabolite of L-leucine that is produced in the human body. Its immediate precursors are β-hydroxy β-methylbutyric acid (HMB) and β-methylcrotonoyl-CoA (MC-CoA). It can be metabolized into HMB, MC-CoA, and HMG-CoA in humans.

Metabolic pathway

Leucine metabolism in humans Diagram of leucine, HMB, and isovaleryl-CoA metabolism in humans L-Leucine Branched-chain amino
acid aminotransferase
α-Ketoglutarate Glutamate Glutamate Alanine Pyruvate Muscle: α-Ketoisocaproate (α-KIC) Liver: α-Ketoisocaproate (α-KIC) Branched-chain α-ketoacid
dehydrogenase
(mitochondria) KIC-dioxygenase
(cytosol) Isovaleryl-CoA β-Hydroxy
β-methylbutyrate

(HMB) Excreted
in urine
(10–40%)


HMB-CoA β-Hydroxy β-methylglutaryl-CoA
(HMG-CoA) β-Methylcrotonyl-CoA
(MC-CoA) β-Methylglutaconyl-CoA
(MG-CoA) CO2 CO2 O2 CO2 H2O CO2 H2O (liver)
HMG-CoA
lyase
Enoyl-CoA hydratase Isovaleryl-CoA
dehydrogenase
MC-CoA
carboxylase
MG-CoA
hydratase
HMG-CoA
reductase
HMG-CoA 
synthase
β-Hydroxybutyrate
dehydrogenase
Mevalonate
pathway
Thiolase Unknown
enzyme β-Hydroxybutyrate Acetoacetyl-CoA Acetyl-CoA Acetoacetate Mevalonate Cholesterol The image above contains clickable linksHuman metabolic pathway for HMB and isovaleryl-CoA relative to L-leucine. Of the two major pathways, L-leucine is mostly metabolized into isovaleryl-CoA, while only about 5% is metabolized into HMB.


Notes

  1. This reaction is catalyzed by an unknown thioesterase enzyme.

References

  1. ^ Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, Ziegenfuss TN, Lopez HL, Kreider RB, Smith-Ryan AE, Antonio J (February 2013). "International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB)". Journal of the International Society of Sports Nutrition. 10 (1): 6. doi:10.1186/1550-2783-10-6. PMC 3568064. PMID 23374455.
  2. ^ Kohlmeier M (May 2015). "Leucine". Nutrient Metabolism: Structures, Functions, and Genes (2nd ed.). Academic Press. pp. 385–388. ISBN 978-0-12-387784-0. Retrieved 6 June 2016. Energy fuel: Eventually, most Leu is broken down, providing about 6.0kcal/g. About 60% of ingested Leu is oxidized within a few hours ... Ketogenesis: A significant proportion (40% of an ingested dose) is converted into acetyl-CoA and thereby contributes to the synthesis of ketones, steroids, fatty acids, and other compounds
    Figure 8.57: Metabolism of L-leucine
  3. "KEGG Reaction: R10759". Kyoto Encyclopedia of Genes and Genomes. Kanehisa Laboratories. Retrieved 24 June 2016.
  4. Mock DM, Stratton SL, Horvath TD, Bogusiewicz A, Matthews NI, Henrich CL, Dawson AM, Spencer HJ, Owen SN, Boysen G, Moran JH (November 2011). "Urinary excretion of 3-hydroxyisovaleric acid and 3-hydroxyisovaleryl carnitine increases in response to a leucine challenge in marginally biotin-deficient humans". primary source. The Journal of Nutrition. 141 (11): 1925–1930. doi:10.3945/jn.111.146126. PMC 3192457. PMID 21918059. Metabolic impairment diverts methylcrotonyl CoA to 3-hydroxyisovaleryl CoA in a reaction catalyzed by enoyl-CoA hydratase (22, 23). 3-Hydroxyisovaleryl CoA accumulation can inhibit cellular respiration either directly or via effects on the ratios of acyl CoA:free CoA if further metabolism and detoxification of 3-hydroxyisovaleryl CoA does not occur (22). The transfer to carnitine by 4 carnitine acyl-CoA transferases distributed in subcellular compartments likely serves as an important reservoir for acyl moieties (39–41). 3-Hydroxyisovaleryl CoA is likely detoxified by carnitine acetyltransferase producing 3HIA-carnitine, which is transported across the inner mitochondrial membrane (and hence effectively out of the mitochondria) via carnitine-acylcarnitine translocase (39). 3HIA-carnitine is thought to be either directly deacylated by a hydrolase to 3HIA or to undergo a second CoA exchange to again form 3-hydroxyisovaleryl CoA followed by release of 3HIA and free CoA by a thioesterase.
  5. ^ Zanchi NE, Gerlinger-Romero F, Guimarães-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, Seelaender M, Lancha AH (April 2011). "HMB supplementation: clinical and athletic performance-related effects and mechanisms of action". Amino Acids. 40 (4): 1015–1025. doi:10.1007/s00726-010-0678-0. PMID 20607321. S2CID 11120110. HMB is a metabolite of the amino acid leucine (Van Koverin and Nissen 1992), an essential amino acid. The first step in HMB metabolism is the reversible transamination of leucine to that occurs mainly extrahepatically (Block and Buse 1990). Following this enzymatic reaction, may follow one of two pathways. In the first, HMB is produced from by the cytosolic enzyme KIC dioxygenase (Sabourin and Bieber 1983). The cytosolic dioxygenase has been characterized extensively and differs from the mitochondrial form in that the dioxygenase enzyme is a cytosolic enzyme, whereas the dehydrogenase enzyme is found exclusively in the mitochondrion (Sabourin and Bieber 1981, 1983). Importantly, this route of HMB formation is direct and completely dependent of liver KIC dioxygenase. Following this pathway, HMB in the cytosol is first converted to cytosolic β-hydroxy-β-methylglutaryl-CoA (HMG-CoA), which can then be directed for cholesterol synthesis (Rudney 1957) (Fig. 1). In fact, numerous biochemical studies have shown that HMB is a precursor of cholesterol (Zabin and Bloch 1951; Nissen et al. 2000).
Amino acid metabolism metabolic intermediates
Kacetyl-CoA
lysine
leucine
tryptophanalanine
G
G→pyruvate
citrate
glycine
serine
G→glutamate
α-ketoglutarate
histidine
proline
arginine
other
G→propionyl-CoA
succinyl-CoA
valine
isoleucine
methionine
threonine
propionyl-CoA
G→fumarate
phenylalaninetyrosine
G→oxaloacetate
Other
Cysteine metabolism
Cholesterol and steroid metabolic intermediates
Mevalonate pathway
to HMG-CoA
Ketone bodies
to DMAPP
Geranyl-
Carotenoid
Non-mevalonate pathway
To Cholesterol
From Cholesterol
to Steroid hormones
Nonhuman
To Sitosterol
To Ergocalciferol


Stub icon

This biochemistry article is a stub. You can help Misplaced Pages by expanding it.

Categories: