Misplaced Pages

Isotopes of niobium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Niobium-95)

Isotopes of niobium (41Nb)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Nb synth 680 y β Zr
Nb synth 60.86 d IT Nb
β Zr
Nb trace 3.47×10 y β Zr
Nb 100% stable
Nb synth 16.12 y IT Nb
Nb trace 2.04×10 y β Mo
Nb synth 34.991 d β Mo
Standard atomic weight Ar°(Nb)
  • 92.90637±0.00001
  • 92.906±0.001 (abridged)

Naturally occurring niobium (41Nb) is composed of one stable isotope (Nb). The most stable radioisotope is Nb with a half-life of 34.7 million years. The next longest-lived niobium isotopes are Nb (half-life: 20,300 years) and Nb with a half-life of 680 years. There is also a meta state of Nb at 31 keV whose half-life is 16.13 years. Twenty-seven other radioisotopes have been characterized. Most of these have half-lives that are less than two hours, except Nb (35 days), Nb (23.4 hours) and Nb (14.6 hours). The primary decay mode before stable Nb is electron capture and the primary mode after is beta emission with some neutron emission occurring in Nb.

Only Nb (35 days) and Nb (72 minutes) and heavier isotopes (half-lives in seconds) are fission products in significant quantity, as the other isotopes are shadowed by stable or very long-lived (Zr) isotopes of the preceding element zirconium from production via beta decay of neutron-rich fission fragments. Nb is the decay product of Zr (64 days), so disappearance of Nb in used nuclear fuel is slower than would be expected from its own 35-day half-life alone. Small amounts of other isotopes may be produced as direct fission products.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Isotopic
abundance
Excitation energy
Nb 41 41 81.94438(32) 51(5) ms β Zr (0+)
Nb 1180(1) keV 93(20) ns IT Nb (5+)
Nb 41 42 82.93815(17) 3.9(2) s β Zr 9/2+#
Nb 41 43 83.93430571(43) 9.8(9) s β Zr (1+)
Nb 48(1) keV 176(46) ns IT Nb (3+)
Nb 337.7(4) keV 92(5) ns IT Nb (5−)
Nb 41 44 84.9288458(44) 20.5(7) s β Zr 9/2+#
Nb 150(80)# keV 3.3(9) s IT (?%) Nb (1/2−)
β (?%) Zr
Nb 41 45 85.9257815(59) 88(1) s β Zr (6+)
Nb 150(100)# keV 20# s β Zr (0−,1−,2−)
Nb 41 46 86.9206925(73) 3.7(1) min β Zr (1/2)−
Nb 3.9(1) keV 2.6(1) min β Zr (9/2)+
Nb 41 47 87.918226(62) 14.50(11) min β Zr (8+)
Nb 130(120) keV 7.7(1) min β Zr (4−)
Nb 41 48 88.913445(25) 2.03(7) h β Zr (9/2+)
Nb 0(30)# keV 1.10(3) h β Zr (1/2)−
Nb 41 49 89.9112592(36) 14.60(5) h β Zr 8+
Nb 122.370(22) keV 63(2) μs IT Nb 6+
Nb 124.67(25) keV 18.81(6) s IT Nb 4-
Nb 171.10(10) keV <1 μs IT Nb 7+
Nb 382.01(25) keV 6.19(8) ms IT Nb 1+
Nb 1880.21(20) keV 471(6) ns IT Nb (11−)
Nb 41 50 90.9069903(31) 680(130) y EC (99.99%) Zr 9/2+
β (0.0138%)
Nb 104.60(5) keV 60.86(22) d IT (96.6%) Nb 1/2−
EC (3.4%) Zr
β (.0028%)
Nb 2034.42(20) keV 3.76(12) μs IT Nb (17/2−)
Nb 41 51 91.9071886(19) 3.47(24)×10 y β Zr 7+ Trace
Nb 135.5(4) keV 10.116(13) d β Zr (2)+
Nb 225.8(4) keV 5.9(2) μs IT Nb (2)−
Nb 2203.3(4) keV 167(4) ns IT Nb (11−)
Nb 41 52 92.9063732(16) Stable 9/2+ 1.0000
Nb 30.760(5) keV 16.12(12) y IT Nb 1/2−
Nb 7460(17) keV 1.5(5) μs IT Nb 33/2−#
Nb 41 53 93.9072790(16) 2.04(4)×10 y β Mo 6+ Trace
Nb 40.892(12) keV 6.263(4) min IT (99.50%) Nb 3+
β (0.50%) Mo
Nb 41 54 94.90683111(55) 34.991(6) d β Mo 9/2+
Nb 235.69(2) keV 3.61(3) d IT (94.4%) Nb 1/2−
β (5.6%) Mo
Nb 41 55 95.90810159(16) 23.35(5) h β Mo 6+
Nb 41 56 96.9081016(46) 72.1(7) min β Mo 9/2+
Nb 743.35(3) keV 58.7(18) s IT Nb 1/2−
Nb 41 57 97.9103326(54) 2.86(6) s β Mo 1+
Nb 84(4) keV 51.1(4) min β Mo (5)+
Nb 41 58 98.911609(13) 15.0(2) s β Mo 9/2+
Nb 365.27(8) keV 2.5(2) min β (?%) Mo 1/2−
IT (?%) Nb
Nb 41 59 99.9143406(86) 1.5(2) s β Mo 1+
Nb 313(8) keV 2.99(11) s β Mo (5+)
Nb 347(8) keV 460(60) ns IT Nb (4−,5−)
Nb 734(8) keV 12.43(26) μs IT Nb (8−)
Nb 41 60 100.9153065(40) 7.1(3) s β Mo 5/2+
Nb 41 61 101.9180904(27) 4.3(4) s β Mo (4+)
Nb 94(7) keV 1.31(16) s β Mo (1+)
Nb 41 62 102.9194534(42) 1.34(7) s β Mo 5/2+
Nb 41 63 103.9229077(19) 0.98(5) s β (99.95%) Mo (1+)
β, n (0.05%) Mo
Nb 9.8(26) keV 4.9(3) s β (99.94%) Mo (0−,1−)
β, n (0.06%) Mo
Nb 41 64 104.9249426(43) 2.91(5) s β (98.3%) Mo (5/2+)
β, n (1.7%) Mo
Nb 41 65 105.9289285(15) 900(20) ms β (95.5%) Mo 1−#
β, n (4.5%) Mo
Nb 100(50)# keV 1.20(6) s β Mo (4−)
Nb 204.8(5) keV 820(38) ns IT Nb (3+)
Nb 41 66 106.9315897(86) 286(8) ms β (92.6%) Mo (5/2+)
β, n (7.4%) Mo
Nb 41 67 107.9360756(88) 201(4) ms β (93.7%) Mo (2+)
β, n (6.3%) Mo
Nb 166.6(5) keV 109(2) ns IT Nb 6−#
Nb 41 68 108.93914(46) 106.9(49) ms β (69%) Mo 3/2−#
β, n (31%) Mo
Nb 312.5(4) keV 115(8) ns IT Nb 7/2+#
Nb 41 69 109.94384(90) 75(1) ms β (60%) Mo 5+#
β, n (40%) Mo
Nb 100(50)# keV 94(9) ms β (60%) Mo 2+#
β, n (40%) Mo
Nb 41 70 110.94744(32)# 54(2) ms β Mo 3/2−#
Nb 41 71 111.95269(32)# 38(2) ms β Mo 1+#
Nb 41 72 112.95683(43)# 32(4) ms β Mo 3/2−#
Nb 41 73 113.96247(54)# 17(5) ms β Mo 2−#
Nb 41 74 114.96685(54)# 23(8) ms β Mo 3/2−#
Nb 41 75 115.97291(32)# 12# ms
1−#
Nb 41 76
This table header & footer:
  1. Nb – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter – Daughter product is nearly stable.
  7. Bold symbol as daughter – Daughter product is stable.
  8. ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Order of ground state and isomer is uncertain.

Niobium-92

Niobium-92 is an extinct radionuclide with a half-life of 34.7 million years, decaying predominantly via β decay. Its abundance relative to the stable Nb in the early Solar System, estimated at 1.7×10, has been measured to investigate the origin of p-nuclei. A higher initial abundance of Nb has been estimated for material in the outer protosolar disk (sampled from the meteorite NWA 6704), suggesting that this nuclide was predominantly formed via the gamma process (photodisintegration) in a nearby core-collapse supernova.

Niobium-92, along with niobium-94, has been detected in refined samples of terrestrial niobium and may originate from bombardment by cosmic ray muons in Earth's crust.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Niobium". CIAAW. 2017.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  6. ^ Iizuka, Tsuyoshi; Lai, Yi-Jen; Akram, Waheed; Amelin, Yuri; Schönbächler, Maria (2016). "The initial abundance and distribution of Nb in the Solar System". Earth and Planetary Science Letters. 439: 172–181. arXiv:1602.00966. Bibcode:2016E&PSL.439..172I. doi:10.1016/j.epsl.2016.02.005. S2CID 119299654.
  7. Hibiya, Y; Iizuka, T; Enomoto, H (2019). THE INITIAL ABUNDANCE OF NIOBIUM-92 IN THE OUTER SOLAR SYSTEM (PDF). Lunar and Planetary Science Conference (50th ed.). Retrieved 7 September 2019.
  8. Hibiya, Y.; Iizuka, T.; Enomoto, H.; Hayakawa, T. (2023). "Evidence for enrichment of niobium-92 in the outer protosolar disk". Astrophysical Journal Letters. 942 (L15): L15. Bibcode:2023ApJ...942L..15H. doi:10.3847/2041-8213/acab5d. S2CID 255414098.
  9. Clayton, Donald D.; Morgan, John A. (1977). "Muon production of Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: