Misplaced Pages

Isotopes of krypton

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Krypton-80)

Isotopes of krypton (36Kr)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Kr 0.360% 9.2×10 y εε Se
Kr synth 35 h ε Br
β Br
γ
Kr 2.29% stable
Kr trace 2.3×10 y ε Br
Kr synth 13.10 s IT Kr
ε Br
Kr 11.6% stable
Kr 11.5% stable
Kr 57.0% stable
Kr trace 11 y β Rb
Kr 17.3% stable
Standard atomic weight Ar°(Kr)

There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 67 to 103. Naturally occurring krypton is made of five stable isotopes and one (
Kr
) which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Kr 36 31 66.98331(46)# 7.4(29) ms β? (63%) Br 3/2-#
2p (37%) Se
Kr 36 32 67.97249(54)# 21.6(33) ms β, p (>90%) Se 0+
β? (<10%) Br
p? Br
Kr 36 33 68.96550(32)# 27.9(8) ms β, p (94%) Se (5/2−)
β (6%) Br
Kr 36 34 69.95588(22)# 45.00(14) ms β (>98.7%) Br 0+
β, p (<1.3%) Se
Kr 36 35 70.95027(14) 98.8(3) ms β (97.9%) Br (5/2)−
β, p (2.1%) Se
Kr 36 36 71.9420924(86) 17.16(18) s β Br 0+
Kr 36 37 72.9392892(71) 27.3(10) s β (99.75%) Br (3/2)−
β, p (0.25%) Se
Kr 433.55(13) keV 107(10) ns IT Kr (9/2+)
Kr 36 38 73.9330840(22) 11.50(11) min β Br 0+
Kr 36 39 74.9309457(87) 4.60(7) min β Br 5/2+
Kr 36 40 75.9259107(43) 14.8(1) h β Br 0+
Kr 36 41 76.9246700(21) 72.6(9) min β Br 5/2+
Kr 66.50(5) keV 118(12) ns IT Kr 3/2−
Kr 36 42 77.92036634(33) 9.2
−2.6 ±1.3×10 y
Double EC Se 0+ 0.00355(3)
Kr 36 43 78.9200829(37) 35.04(10) h β Br 1/2−
Kr 129.77(5) keV 50(3) s IT Kr 7/2+
Kr 36 44 79.91637794(75) Stable 0+ 0.02286(10)
Kr 36 45 80.9165897(12) 2.29(11)×10 y EC Br 7/2+ 6×10
Kr 190.64(4) keV 13.10(3) s IT Kr 1/2−
EC (0.0025%) Br
Kr 36 46 81.9134811537(59) Stable 0+ 0.11593(31)
Kr 36 47 82.914126516(9) Stable 9/2+ 0.11500(19)
Kr 9.4053(8) keV 156.8(5) ns IT Kr 7/2+
Kr 41.5575(7) keV 1.830(13) h IT Kr 1/2−
Kr 36 48 83.9114977271(41) Stable 0+ 0.56987(15)
Kr 3236.07(18) keV 1.83(4) μs IT Kr 8+
Kr 36 49 84.9125273(21) 10.728(7) y β Rb 9/2+ 1×10
Kr 304.871(20) keV 4.480(8) h β (78.8%) Rb 1/2−
IT (21.2%) Kr
Kr 1991.8(2) keV 1.82(5) μs
IT Kr (17/2+)
Kr 36 50 85.9106106247(40) Observationally Stable 0+ 0.17279(41)
Kr 36 51 86.91335476(26) 76.3(5) min β Rb 5/2+
Kr 36 52 87.9144479(28) 2.825(19) h β Rb 0+
Kr 36 53 88.9178354(23) 3.15(4) min β Rb 3/2+
Kr 36 54 89.9195279(20) 32.32(9) s β Rb 0+
Kr 36 55 90.9238063(24) 8.57(4) s β Rb 5/2+
β, n? Rb
Kr 36 56 91.9261731(29) 1.840(8) s β (99.97%) Rb 0+
β, n (0.0332%) Rb
Kr 36 57 92.9311472(27) 1.287(10) s β (98.05%) Rb 1/2+
β, n (1.95%) Rb
Kr 36 58 93.934140(13) 212(4) ms β (98.89%) Rb 0+
β, n (1.11%) Rb
Kr 36 59 94.939711(20) 114(3) ms β (97.13%) Rb 1/2+
β, n (2.87%) Rb
β, 2n? Rb
Kr 195.5(3) keV 1.582(22) μs
IT Kr (7/2+)
Kr 36 60 95.942998(62) 80(8) ms β (96.3%) Rb 0+
β, n (3.7%) Rb
Kr 36 61 96.94909(14) 62.2(32) ms β (93.3%) Rb 3/2+#
β, n (6.7%) Rb
β, 2n? Rb
Kr 36 62 97.95264(32)# 42.8(36) ms β (93.0%) Rb 0+
β, n (7.0%) Rb
β, 2n? Rb
Kr 36 63 98.95878(43)# 40(11) ms β (89%) Rb 5/2−#
β, n (11%) Rb
β, 2n? Rb
Kr 36 64 99.96300(43)# 12(8) ms β Rb 0+
β, n? Rb
β, 2n? Rb
Kr 36 65 100.96932(54)# 9# ms
β? Rb 5/2+#
β, n? Rb
β, 2n? Rb
Kr 36 66 0+
Kr 36 67
This table header & footer:
  1. Kr – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    n: Neutron emission
  7. Bold italics symbol as daughter – Daughter product is nearly stable.
  8. Bold symbol as daughter – Daughter product is stable.
  9. ( ) spin value – Indicates spin with weak assignment arguments.
  10. Primordial radionuclide
  11. Used to date groundwater
  12. ^ Fission product
  13. Formerly used to define the meter
  14. Believed to decay by ββ to Sr
  • The isotopic composition refers to that in air.

Notable isotopes

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (May 2018) (Learn how and when to remove this message)

Krypton-81

This section needs expansion with: Usage in hydrogeology, ATC=V09. You can help by adding to it. (October 2019)

Krypton-81 is useful in determining how old the water beneath the ground is. Radioactive krypton-81 is the product of spallation reactions with cosmic rays striking gases present in the Earth atmosphere, along with the six stable or nearly stable krypton isotopes. Krypton-81 has a half-life of about 229,000 years.

Krypton-81 is used for dating ancient (50,000- to 800,000-year-old) groundwater and to determine their residence time in deep aquifers. One of the main technical limitations of the method is that it requires the sampling of very large volumes of water: several hundred liters or a few cubic meters of water. This is particularly challenging for dating pore water in deep clay aquitards with very low hydraulic conductivity.

Krypton-85

Main article: Krypton-85

Krypton-85 has a half-life of about 10.75 years. This isotope is produced by the nuclear fission of uranium and plutonium in nuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is almost inevitable that krypton-85 is released during the reprocessing of fuel rods from nuclear reactors.

Atmospheric concentration

See also: Nuclear reprocessing

The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the Amundsen–Scott South Pole Station because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the northern hemisphere, and also well-north of the equator. To be more specific, those nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan.

Krypton-86

Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 606 nm (orange) spectral line of a krypton-86 atom.

Others

All other radioisotopes of krypton have half-lives of less than one day, except for krypton-79, a positron emitter with a half-life of about 35.0 hours.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ Patrignani, C.; et al. (Particle Data Group) (2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. See p. 768
  3. "Standard Atomic Weights: Krypton". CIAAW. 2001.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. ^ Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater". Physics Today. 66 (3): 74–75. Bibcode:2013PhT....66c..74L. doi:10.1063/PT.3.1926. Retrieved 29 June 2024.
  7. Smith, Matthew B.; Murböck, Tobias; Dunling, Eleanor; Jacobs, Andrew; Kootte, Brian; Lan, Yang; Leistenschneider, Erich; Lunney, David; Lykiardopoulou, Eleni Marina; Mukul, Ish; Paul, Stefan F.; Reiter, Moritz P.; Will, Christian; Dilling, Jens; Kwiatkowski, Anna A. (2020). "High-precision mass measurement of neutron-rich 96Kr". Hyperfine Interactions. 241 (1): 59. Bibcode:2020HyInt.241...59S. doi:10.1007/s10751-020-01722-2. S2CID 220512482.
  8. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  9. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
  10. Le-Yi Tu, Guo-Min Yang, Cun-Feng Cheng, Gu-Liang Liu, Xiang-Yang Zhang, and Shui-Ming Hu (2014). "Analysis of Krypton-85 and Krypton-81 in a Few Liters of Air". Analytical Chemistry. 86 (8): 4002–4007.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Leya, I.; Gilabert, E.; Lavielle, B.; Wiechert, U.; Wieler, W. (2004). "Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known Cl-Ar ages" (PDF). Antarctic Meteorite Research. 17: 185–199. Bibcode:2004AMR....17..185L.
  12. N. Thonnard; L. D. MeKay; T. C. Labotka (2001). Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences (PDF) (Report). University of Tennessee, Institute for Rare Isotope Measurements. pp. 4–7. doi:10.2172/809813.
  13. "Environmental Consequences Of Atmospheric Krypton-85" (PDF). p. 8. Retrieved 2024-12-08.
  14. "Resources on Isotopes". U.S. Geological Survey. Archived from the original on 2001-09-24. Retrieved 2007-03-20.
  15. Baird, K. M.; Howlett, L. E. (1963). "The International Length Standard". Applied Optics. 2 (5): 455–463. Bibcode:1963ApOpt...2..455B. doi:10.1364/AO.2.000455.

Sources

External links

Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: