8-simplex |
Truncated 8-simplex |
Rectified 8-simplex |
Quadritruncated 8-simplex |
Tritruncated 8-simplex |
Bitruncated 8-simplex |
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a truncated 8-simplex is a convex uniform 8-polytope, being a truncation of the regular 8-simplex.
There are four unique degrees of truncation. Vertices of the truncation 8-simplex are located as pairs on the edge of the 8-simplex. Vertices of the bitruncated 8-simplex are located on the triangular faces of the 8-simplex. Vertices of the tritruncated 8-simplex are located inside the tetrahedral cells of the 8-simplex.
Truncated 8-simplex
Truncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t{3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 288 |
Vertices | 72 |
Vertex figure | ( )v{3,3,3,3,3} |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Truncated enneazetton (Acronym: tene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the truncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bitruncated 8-simplex
Bitruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 2t{3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 1008 |
Vertices | 252 |
Vertex figure | { }v{3,3,3,3} |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Bitruncated enneazetton (Acronym: batene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the bitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Tritruncated 8-simplex
tritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 3t{3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2016 |
Vertices | 504 |
Vertex figure | {3}v{3,3,3} |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Tritruncated enneazetton (Acronym: tatene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the tritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Quadritruncated 8-simplex
Quadritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 4t{3} |
Coxeter-Dynkin diagrams | or |
6-faces | 18 3t{3,3,3,3,3,3} |
7-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 2520 |
Vertices | 630 |
Vertex figure | {3,3}v{3,3} |
Coxeter group | A8, ], order 725760 |
Properties | convex, isotopic |
The quadritruncated 8-simplex an isotopic polytope, constructed from 18 tritruncated 7-simplex facets.
Alternate names
- Octadecazetton (18-facetted 8-polytope) (Acronym: be) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the quadritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,2,2,2). This construction is based on facets of the quadritruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Related polytopes
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Name Coxeter |
Hexagon = t{3} = {6} |
Octahedron = r{3,3} = {3} = {3,4} |
Decachoron 2t{3} |
Dodecateron 2r{3} = {3} |
Tetradecapeton 3t{3} |
Hexadecaexon 3r{3} = {3} |
Octadecazetton 4t{3} |
Images | |||||||
Vertex figure | ( )∨( ) | { }×{ } |
{ }∨{ } |
{3}×{3} |
{3}∨{3} |
{3,3}×{3,3} | {3,3}∨{3,3} |
Facets | {3} | t{3,3} | r{3,3,3} | 2t{3,3,3,3} | 2r{3,3,3,3,3} | 3t{3,3,3,3,3,3} | |
As intersecting dual simplexes |
∩ |
∩ |
∩ |
∩ |
∩ | ∩ | ∩ |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
- Klitizing, (x3x3o3o3o3o3o3o - tene)
- Klitizing, (o3x3x3o3o3o3o3o - batene)
- Klitizing, (o3o3x3x3o3o3o3o - tatene)
- Klitizing, (o3o3o3x3x3o3o3o - be)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3x3o3o3o3o3o3o - tene, o3x3x3o3o3o3o3o - batene, o3o3x3x3o3o3o3o - tatene, o3o3o3x3x3o3o3o - be
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |