8-simplex |
Runcinated 8-simplex |
Biruncinated 8-simplex |
Triruncinated 8-simplex |
Runcitruncated 8-simplex |
Biruncitruncated 8-simplex |
Triruncitruncated 8-simplex |
Runcicantellated 8-simplex |
Biruncicantellated 8-simplex |
Runcicantitruncated 8-simplex |
Biruncicantitruncated 8-simplex |
Triruncicantitruncated 8-simplex |
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a runcinated 8-simplex is a convex uniform 8-polytope with 3rd order truncations (runcination) of the regular 8-simplex.
There are eleven unique runcinations of the 8-simplex, including permutations of truncation and cantellation. The triruncinated 8-simplex and triruncicanti
Runcinated 8-simplex
Runcinated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,3{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 4536 |
Vertices | 504 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Runcinated enneazetton
- Small prismated enneazetton (Acronym: spene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the runcinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Biruncinated 8-simplex
Biruncinated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 11340 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Biruncinated enneazetton
- Small biprismated enneazetton (Acronym: sabpene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the biruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Triruncinated 8-simplex
Triruncinated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t2,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 15120 |
Vertices | 1680 |
Vertex figure | |
Coxeter group | A8×2, ], order 725760 |
Properties | convex |
Alternate names
- Triruncinated enneazetton
- Small triprismated enneazetton (Acronym: satpeb) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the triruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,2,2,2). This construction is based on facets of the triruncinated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Runcitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Biruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Triruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Runcicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Biruncicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Runcicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Biruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Triruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ] = | ] = | ||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry | ] = | ] = |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
- Klitzing (x3o3o3x3o3o3o3o - spene)
- Klitzing (o3x3o3o3x3o3o3o - sabpene)
- Klitzing (o3o3x3o3o3x3o3o - satpeb)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3o3x3o3o3o3o - spene, o3x3o3o3x3o3o3o - sabpene, o3o3x3o3o3x3o3o - satpeb
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |