Cantellated 8-simplex |
Bicantellated 8-simplex |
Tricantellated 8-simplex | |
Cantitruncated 8-simplex |
Bicantitruncated 8-simplex |
Tricantitruncated 8-simplex | |
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a cantellated 8-simplex is a convex uniform 8-polytope, being a cantellation of the regular 8-simplex.
There are six unique cantellations for the 8-simplex, including permutations of truncation.
Cantellated 8-simplex
Cantellated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | rr{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 1764 |
Vertices | 252 |
Vertex figure | 6-simplex prism |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Small rhombated enneazetton (acronym: srene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the cantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bicantellated 8-simplex
Bicantellated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | r2r{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 5292 |
Vertices | 756 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Small birhombated enneazetton (acronym: sabrene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the bicantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Tricantellated 8-simplex
tricantellated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | r3r{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 8820 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Small trirhombihexadecaexon (acronym: satrene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the tricantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the tricantellated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Cantitruncated 8-simplex
Cantitruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | tr{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Great rhombated enneazetton (acronym: grene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the cantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bicantitruncated 8-simplex
Bicantitruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t2r{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Alternate names
- Great birhombated enneazetton (acronym: gabrene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the bicantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Tricantitruncated 8-simplex
Tricantitruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t3r{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagram | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
- Great trirhombated enneazetton (acronym: gatrene) (Jonathan Bowers)
Coordinates
The Cartesian coordinates of the vertices of the tricantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,3,3,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
- Klitizing, (x3o3x3o3o3o3o3o - srene)
- Klitizing, (o3x3o3x3o3o3o3o - sabrene)
- Klitizing, (o3o3x3o3x3o3o3o - satrene)
- Klitizing, (x3x3x3o3o3o3o3o - grene)
- Klitizing, (o3x3x3x3o3o3o3o - gabrene)
- Klitizing, (o3o3x3x3x3o3o3o - gatrene)
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3x3o3o3o3o3o - srene, o3x3o3x3o3o3o3o - sabrene, o3o3x3o3x3o3o3o - satrene, x3x3x3o3o3o3o3o - grene, o3x3x3x3o3o3o3o - gabrene, o3o3x3x3x3o3o3o - gatrene
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |