This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (September 2024) |
8-simplex |
Stericated 8-simplex |
Bistericated 8-simplex | |
Steri-truncated 8-simplex |
Bisteri-truncated 8-simplex |
Steri-cantellated 8-simplex |
Bisteri-cantellated 8-simplex |
Stericanti-truncated 8-simplex |
Bistericanti-truncated 8-simplex |
Steri-runcinated 8-simplex |
Bisteri-runcinated 8-simplex |
Steriruncitruncated 8-simplex |
Bisterirun-citruncated 8-simplex |
Sterirunci-cantellated 8-simplex |
Bisterirunci-cantellated 8-simplex |
Steriruncicanti-truncated 8-simplex |
Bisteriruncicanti-truncated 8-simplex | ||
Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a stericated 8-simplex is a convex uniform 8-polytope with 4th order truncations (sterication) of the regular 8-simplex. There are 16 unique sterications for the 8-simplex including permutations of truncation, cantellation, and runcination.
Stericated 8-simplex
Stericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 6300 |
Vertices | 630 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Coordinates
The Cartesian coordinates of the vertices of the stericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,1,2). This construction is based on facets of the stericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bistericated 8-simplex
bistericated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | 12600 |
Vertices | 1260 |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Coordinates
The Cartesian coordinates of the vertices of the bistericated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,1,2,2). This construction is based on facets of the bistericated 9-orthoplex.
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Steritruncated 8-simplex
Steritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t0,1,4{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bisteritruncated 8-simplex
Bisteritruncated 8-simplex | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t1,2,5{3,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
7-faces | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter group | A8, , order 362880 |
Properties | convex |
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Stericantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bistericantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Stericantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bistericantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Steriruncinated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bisteriruncinated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Steriruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bisteriruncitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Steriruncicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bisteriruncicantellated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Steriruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Bisteriruncicantitruncated 8-simplex
Images
Ak Coxeter plane | A8 | A7 | A6 | A5 |
---|---|---|---|---|
Graph | ||||
Dihedral symmetry | ||||
Ak Coxeter plane | A4 | A3 | A2 | |
Graph | ||||
Dihedral symmetry |
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I,
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II,
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III,
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Klitzing, Richard. "8D uniform polytopes (polyzetta)". x3o3o3o3x3o3o3o, o3x3o3o3o3x3o3o
External links
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform polychoron | Pentachoron | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |