Misplaced Pages

Scandium(III) hydride

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
For the scandium–hydrogen alloy, see Scandium hydride.
Scandium(III) hydride
Names
Other names
  • Scandane
  • Scandium(III) hydride
  • Scandium trihydride
Identifiers
CAS Number
3D model (JSmol)
PubChem CID
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Sc.3HKey: NTLPNEDDYLQQDI-UHFFFAOYSA-N
SMILES
Properties
Chemical formula ScH
3
Molar mass 47.97973 g mol
Structure
Space group C3v
Coordination geometry Trigonal
Molecular shape Irregular tetrahedral
Related compounds
Related scandiums
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Scandium trihydride is an unstable molecular chemical compound with the chemical formula ScH3. It has been formed as one of a number of other molecular scandium hydride products at low temperature using laser ablation and identified by infrared spectroscopy. Scandium trihydride has recently been the subject of DiracHartree–Fock relativistic calculation studies, which investigate the stabilities, geometries, and relative energies of hydrides of the formula MH3, MH2, or MH.

Properties and bonding

Scandium trihydride is a quastrigonal planar molecule with three equivalent Sc-H bonds. (C3v) structure an equilibrium distance between Sc and hydrogen of 182.0 pm, the bond angle is 119.2 degrees. By weight percent, the composition of scandium trihydride is 6.30% hydrogen and 93.70% scandium. In scandium trihydride, the formal oxidation states of hydrogen and scandium are -1 and +3 respectively, because of the electronegativity of scandium is lower than that of hydrogen. The stability of metal hydrides with the formula MH3 (M = Sc-Lu) increases as the atomic number of M increases.

Early theoretical studies of ScH3 revealed that the molecule is unstable, the bulk substance is likely to be a colourless gas with a low activation energy toward the conversion into trimeric clusters due to the electron deficient nature of the monomer, not unlike the group 13 hydrides. One major difference, is that the dimer is the most stable cluster for group 13 hydrides. This can be attributed to the distortion caused by the d-orbitals. It cannot be made by methods used to synthesise BH3 or AlH3.

References

  1. ^ Wang, Xuefeng; Chertihin, George V.; Andrews, Lester (13 September 2002). "Matrix infrared spectra and DFT calculations of the reactive MHx (x = 1, 2, and 3), (H2)MH2, MH2, and MH4 (M = Sc, Y, and La) species". The Journal of Physical Chemistry A. 106 (40): 9213–9225. Bibcode:2002JPCA..106.9213W. doi:10.1021/jp026166z.
Scandium compounds
Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline
(Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Categories: